Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Invest ; 40(10): 911-922, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36073945

ABSTRACT

Treatment decisions for patients with cutaneous squamous cell carcinoma (cSCC) are traditionally based upon clinicopathologic risk factors and staging systems. Due to the accuracy limitations of these resources in predicting poor outcomes, there is a clinically significant need for more accurate methods of risk assessment. The 40-gene expression profile (40-GEP) test was developed to augment metastatic risk prediction of high-risk cSCC patients and has been validated in two independent, multi-center studies involving over 1,000 patients. This study substantiates that the 40-GEP is appropriately utilized by clinicians and that the personalized risk-stratification results are impactful in guiding risk-aligned patient management.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Prognosis , Skin Neoplasms/diagnosis , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Neoplasm Staging , Transcriptome
2.
Future Oncol ; 17(36): 5023-5031, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34587770

ABSTRACT

Aim: Sentinel node biopsy is a prognostic indicator of melanoma recurrence. We hypothesized that adding the primary melanoma molecular signature from the 31-gene expression profile (31-GEP) test could refine the risk of recurrence prognosis for patients with stage I-III melanoma. Materials & methods: Four hundred thirty-eight patients with stage I-III melanoma consecutively tested with the 31-GEP were retrospectively analyzed. The 31-GEP stratified patients as low-risk (Class 1A), intermediate-risk (Class 1B/2A) or high risk (Class 2B) of recurrence or metastasis. Results: The 31-GEP significantly stratified patient risk for recurrence-free survival (p < 0.001), distant metastasis-free survival (p < 0.001) and melanoma-specific survival (p < 0.001) and was a significant, independent predictor of metastatic recurrence (hazard ratio: 5.38; p = 0.014). Conclusion: The 31-GEP improves prognostic accuracy in stage I-III melanoma.


Lay abstract Cutaneous melanoma is a type of skin tumor affecting 100,000 new patients each year. Even with the best tools available today, knowing which patients will die from their cancer can be challenging. Using individual tumors from over 400 patients, we analyzed the expression of 31 genes from each tumor. Doing this helped us split the patients into groups who are more or less likely to die from their tumor. By combining this technique with current medical practices and guidelines, we hope to help identify which patients may or may not benefit from more intense therapies.


Subject(s)
Melanoma/genetics , Skin Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Female , Gene Expression Profiling , Humans , Male , Melanoma/pathology , Middle Aged , Prognosis , Retrospective Studies , Skin Neoplasms/pathology , Survival Analysis , Young Adult
3.
Commun Biol ; 4(1): 142, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514834

ABSTRACT

The genetic and metabolic heterogeneity of RAS-driven cancers has confounded therapeutic strategies in the clinic. To address this, rapid and genetically tractable animal models are needed that recapitulate the heterogeneity of RAS-driven cancers in vivo. Here, we generate a Drosophila melanogaster model of Ras/Lkb1 mutant carcinoma. We show that low-level expression of oncogenic Ras (RasLow) promotes the survival of Lkb1 mutant tissue, but results in autonomous cell cycle arrest and non-autonomous overgrowth of wild-type tissue. In contrast, high-level expression of oncogenic Ras (RasHigh) transforms Lkb1 mutant tissue resulting in lethal malignant tumors. Using simultaneous multiview light-sheet microcopy, we have characterized invasion phenotypes of Ras/Lkb1 tumors in living larvae. Our molecular analysis reveals sustained activation of the AMPK pathway in malignant Ras/Lkb1 tumors, and demonstrate the genetic and pharmacologic dependence of these tumors on CaMK-activated Ampk. We further show that LKB1 mutant human lung adenocarcinoma patients with high levels of oncogenic KRAS exhibit worse overall survival and increased AMPK activation. Our results suggest that high levels of oncogenic KRAS is a driving event in the malignant transformation of LKB1 mutant tissue, and uncovers a vulnerability that may be used to target this aggressive genetic subset of RAS-driven tumors.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genes, ras , Mutation , Neoplasms, Experimental/genetics , Protein Kinases/genetics , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Adenocarcinoma of Lung/enzymology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Animals , Animals, Genetically Modified , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Death , Cell Movement , Databases, Genetic , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/enzymology , Enzyme Activation , Genetic Predisposition to Disease , Humans , Larva/enzymology , Larva/genetics , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Neoplasm Invasiveness , Neoplasms, Experimental/enzymology , Phenotype , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...