Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 67(2): e0109522, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36648230

ABSTRACT

OXA-48-producing Enterobacterales have now widely disseminated throughout the world. Several variants have now been reported, differing by just a few amino-acid substitutions or deletions, mostly in the region of the loop ß5-ß6. As OXA-48 hydrolyzes carbapenems but lacks significant expanded-spectrum cephalosporin (ESC) hydrolytic activity, ESCs were suggested as a therapeutic option. Here, we have characterized OXA-517, a natural variant of OXA-48- with an Arg214Lys substitution and a deletion of Ile215 and Glu216 in the ß5-ß6 loop, capable of hydrolyzing at the same time ESC and carbapenems. MICs values of E. coli expressing blaOXA-517 gene revealed reduced susceptibility to carbapenems (similarly to OXA-48) and resistance to ESCs. Steady-state kinetic parameters revealed high catalytic efficiencies for ESCs and carbapenems. The blaOXA-517 gene was located on a ca. 31-kb plasmid identical to the prototypical IncL blaOXA-48-carrying plasmid except for an IS1R-mediated deletion of 30.7-kb in the tra operon. The crystal structure of OXA-517, determined to 1.86 Å resolution, revealed an expanded active site compared to that of OXA-48, which allows for accommodation of the bulky ceftazidime substrate. Our work illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutation/deletion in the ß5-ß6 loop to extend its hydrolysis profile to encompass most ß-lactam substrates.


Subject(s)
Carbapenems , Cephalosporins , Carbapenems/pharmacology , Escherichia coli/genetics , beta-Lactamases/genetics , beta-Lactamases/chemistry , Ceftazidime , Monobactams , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
2.
Int J Biol Macromol ; 158: 104-115, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32353499

ABSTRACT

Two accessory loop regions that are present in numerous variants of New Delhi metallo-ß-lactamases (NDM) are important for the enzymatic activity. The first one is a flexible loop L3 that is located near the active site and is thought to play an important role in the catalytic process. The second region, Ω loop is located close to a structural element that coordinates two essential zinc ions. Both loops are not involved in any specific interactions with a substrate. Herein, we investigated how the length and hydrophobicity of loop L3 influence the enzymatic activity of NDMs, by analyzing mutants of NDM-1 with various deletions/point mutations within the L3 loop. We also investigated NDM variants with sequence variations/artificial deletions within the Ω loop. For all these variants we determined kinetic parameters for the hydrolysis of ampicillin, imipenem, and a chromogenic cephalosporin (CENTA). None of the mutations in the L3 loop completely abolished the enzymatic activity of NDM-1. Our results suggest that various elements of the loop play different roles in the hydrolysis of different substrates and the flexibility of the loop seems necessary to fulfill the requirements imposed by various substrates. Deletions within the Ω loop usually enhanced the enzymatic activity, particularly for the hydrolysis of ampicillin and imipenem. However, the exact role of the Ω loop in the catalytic reaction remains unclear. In our kinetic tests, the NDM enzymes were inhibited in the ß-lactamase reaction by the CENTA substrate. We also present the X-ray crystal structures of the NDM-1, NDM-9 and NDM-12 proteins.

3.
Cell Rep ; 26(12): 3336-3346.e4, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30893605

ABSTRACT

The DNA-dependent metalloprotease Spartan (SPRTN) cleaves DNA-protein crosslinks (DPCs) and protects cells from DPC-induced genome instability. Germline mutations of SPRTN are linked to human Ruijs-Aalfs syndrome (RJALS) characterized by progeria and early-onset hepatocellular carcinoma. The mechanism of DNA-mediated activation of SPRTN is not understood. Here, we report the crystal structure of the human SPRTN SprT domain bound to single-stranded DNA (ssDNA). Our structure reveals a Zn2+-binding sub-domain (ZBD) in SprT that shields its active site located in the metalloprotease sub-domain (MPD). The narrow catalytic groove between MPD and ZBD only permits cleavage of flexible substrates. The ZBD contains an ssDNA-binding site, with a DNA-base-binding pocket formed by aromatic residues. Mutations of ssDNA-binding residues diminish the protease activity of SPRTN. We propose that the ZBD contributes to the ssDNA specificity of SPRTN, restricts the access of globular substrates, and positions DPCs, which may need to be partially unfolded, for optimal cleavage.


Subject(s)
DNA, Single-Stranded/chemistry , DNA-Binding Proteins/chemistry , Crystallography, X-Ray , Humans , Protein Domains
4.
Drug Resist Updat ; 40: 1-12, 2018 09.
Article in English | MEDLINE | ID: mdl-30466711

ABSTRACT

ß-Lactamases are hydrolytic enzymes capable of opening the ß-lactam ring of antibiotics such as penicillin, thus endowing the bacteria that produce them with antibiotic resistance. Of particular medical concern are metallo-ß-lactamases (MBLs), with an active site built around coordinated Zn cations. MBLs are pan-reactive enzymes that can break down almost all classes of ß-lactams, including such last-resort antibiotics as carbapenems. They are not only broad-spectrum-reactive but are often plasmid-borne (e.g., the New Delhi enzyme, NDM), and can spread horizontally even among unrelated bacteria. Acquired MBLs are encoded by mobile genetic elements, which often include other resistance genes, making the microbiological situation particularly alarming. There is an urgent need to develop MBL inhibitors in order to rescue our antibiotic armory. A number of such efforts have been undertaken, most notably using the 3D structures of various MBLs as drug-design targets. Structure-guided drug discovery depends on the quality of the structures that are collected in the Protein Data Bank (PDB) and on the consistency of the information in dedicated ß-lactamase databases. We conducted a careful review of the crystal structures of class B ß-lactamases, concluding that the quality of these structures varies widely, especially in the regions where small molecules interact with the macromolecules. In a number of examples the interpretation of the bound ligands (e.g., inhibitors, substrate/product analogs) is doubtful or even incorrect, and it appears that in some cases the modeling of ligands was not supported by electron density. For ten MBL structures, alternative interpretations of the original diffraction data could be proposed and the new models have been deposited in the PDB. In four cases, these models, prepared jointly with the authors of the original depositions, superseded the previous deposits. This review emphasizes the importance of critical assessment of structural models describing key drug design targets at the level of the raw experimental data. Since the structures reviewed here are the basis for ongoing design of new MBL inhibitors, it is important to identify and correct the problems with ambiguous crystallographic interpretations, thus enhancing reproducibility in this highly medically relevant area.


Subject(s)
Models, Structural , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , beta-Lactams/chemistry , Biomedical Research , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure , Protein Conformation , Substrate Specificity , beta-Lactamase Inhibitors/pharmacology , beta-Lactams/pharmacology
5.
Proteins ; 84(6): 770-6, 2016 06.
Article in English | MEDLINE | ID: mdl-26914344

ABSTRACT

In a recently published article (Yao, Flight, Rouchka, and Moseley, Proteins 2015;83:1470-1487) the authors proposed novel Zn coordination patterns in protein structures, apparently discovered using an unprejudiced approach to the information collected in the Protein data Bank (PDB), which they advocated as superior to the prior-knowledge-informed paradigm. In our assessment of those propositions we demonstrate here that most, if not all, of the "new" coordination geometries are fictitious, as they are based on incorrectly interpreted protein crystal structures, which in themselves are often not error-free. The flaws of interpretation include partial or wrong Zn sites, missed or wrong ligands, ignored crystal symmetry and ligands, etc. In conclusion, we warn against using this and similar meta-analyses that ignore chemical and crystallographic knowledge, and emphasize the importance of safeguarding structural databases against bad apples. Proteins 2016; 84:770-776. © 2016 Wiley Periodicals, Inc.


Subject(s)
Metalloproteins/chemistry , Zinc/chemistry , Animals , Binding Sites , Databases, Protein , Humans , Ligands , Models, Molecular , Protein Conformation , Stereoisomerism
6.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 821-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23633591

ABSTRACT

X-ray crystallography reveals chitinase from the psychrophilic bacterium Moritella marina to be an elongated molecule which in addition to the catalytic ß/α-barrel domain contains two Ig-like domains and a chitin-binding domain, all linked in a chain. A ligand-binding study using NAG oligomers showed the enzyme to be active in the crystal lattice and resulted in complexes of the protein with oxazolinium ion (the reaction intermediate) and with NAG2, a reaction product. The characteristic motif DXDXE, containing three acidic amino-acid residues, which is a signature of type 18 chitinases, is conserved in the enzyme. Further analysis of the unliganded enzyme with the two protein-ligand complexes and a comparison with other known chitinases elucidated the roles of other conserved residues near the active site. Several features have been identified that are probably important for the reaction mechanism, substrate binding and the efficiency of the enzyme at low temperatures. The chitin-binding domain and the tryptophan patch on the catalytic domain provide general affinity for chitin, in addition to the affinity of the binding site; the two Ig-like domains give the protein a long reach over the chitin surface, and the flexible region between the chitin-binding domain and the adjacent Ig-like domain suggests an ability of the enzyme to probe the surface of the substrate, while the open shallow substrate-binding groove allows easy access to the active site.


Subject(s)
Chitinases/chemistry , Moritella/enzymology , Amino Acid Motifs , Aquatic Organisms , Binding Sites , Catalytic Domain , Chitinases/metabolism , Crystallography, X-Ray , Ligands , Models, Molecular , Moritella/chemistry , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Protein Conformation , Protein Structure, Tertiary , Trisaccharides/chemistry , Trisaccharides/metabolism , Tryptophan/chemistry
7.
J Struct Biol ; 173(2): 294-302, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21095228

ABSTRACT

The nitrilase superfamily is a large and diverse superfamily of enzymes that catalyse the cleavage of various types of carbon-nitrogen bonds using a Cys-Glu-Lys catalytic triad. Thermoactive nitrilase from Pyrococcus abyssi (PaNit) hydrolyses small aliphatic nitriles like fumaro- and malononitryl. Yet, the biological role of this enzyme is unknown. We have analysed several crystal structures of PaNit: without ligands, with an acetate ion bound in the active site and with a bromide ion in the active site. In addition, docking calculations have been performed for fumaro- and malononitriles. The structures provide a proof for specific binding of the carboxylate ion and a general affinity for negatively changed ligands. The role of residues in the active site is considered and an enzymatic reaction mechanism is proposed in which Cys146 acts as the nucleophile, Glu42 as the general base, Lys113/Glu42 as the general acid, WatA as the hydrolytic water and Nζ_Lys113 and N_Phe147 form the oxyanion hole.


Subject(s)
Aminohydrolases/chemistry , Pyrococcus abyssi/enzymology , Aminohydrolases/metabolism , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Protein Binding , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...