Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 248: 125917, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32004892

ABSTRACT

Quorum sensing signals regulate various functions within activated sludge processes such as formation of microbial aggregates. Disturbance of this signaling system, known as quorum quenching (QQ), provides opportunities for eliminating some problems related to biological wastewater treatment (e.g., biofouling and excess sludge production). However, it is poorly understood how and to what extent QQ systems can affect the microbial aggregation processes and the following floc formation. In particular, an in-depth structural characterization at the scale of microbial aggregate while considering nutrient conditions in the reactor is still largely disregarded. Here, we evaluated the QQ effects at the short-term time scale (i.e., after 4 h for the exogenous period and 19 h for exogenous/endogenous period), by combining advanced techniques for microbial characterization (flow cytometry, CARD-FISH, and confocal laser scanning microscopy) and conventional physical-chemical assessments. The results indicated that by implementing QQ agents (immobilized Acylase I enzyme in porous alginate beads) the abundance of single cells and suspended microbial aggregates in the supernatant did not show significant changes during the exogenous period. Conversely, at the end of the exogenous/endogenous period a significant increase of single prokaryotic cells, small and large microbial aggregates favored the growth of grazers, including free-living nanoflagellates and ciliates. Flocs became looser and thinner than those in the control reactor, thus affecting the sludge settling behavior. Inability of microbial community in degradation of soluble protein during the endogenous period confirmed that the QQ agents are likely to inhibit the secretion of protease enzyme within microbial communities of activated sludge.


Subject(s)
Quorum Sensing/physiology , Waste Disposal, Fluid/methods , Biofouling , Bioreactors , Enzymes, Immobilized , Nutrients , Sewage , Wastewater
2.
Chemosphere ; 209: 525-533, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29945045

ABSTRACT

The Quorum Sensing (QS) system has attracted the interest of researchers as a cell-cell communication system. In activated sludge processes, the production of extracellular polymeric substances (EPS), biofilms and floc formation are regulated by the QS system. Hence, disruption of the QS system, called Quorum Quenching (QQ), could have a significant effect on the quality and quantity of excess sludge. In the present research, the quorum quenching bacteria, Rhodococcus sp. BH4 was used as a quorum quencher and was entrapped in an alginate structure (QQ beads). Three separate sequential batch reactors (SBR) were constructed and operated as a control reactor, a Low-QQ reactor (containing 150 QQ beads), and a High-QQ reactor (containing 600 QQ beads). Results indicated that the presence of QQ beads in the aeration reactor leads to a decrease in EPS content and mean floc particle size in the both Low-QQ and High-QQ reactors. The eukaryotic community was changed significantly so that the QS disruption caused an enhancement in microbial predation. The presence of QQ beads also led to a 16 and a 26% decrease in the Yobs coefficient within the Low-QQ and High-QQ reactors, respectively. Findings of this research revealed a new application of the QQ system in the activated sludge process, but additional studies are needed.


Subject(s)
Biofilms/growth & development , Bioreactors/microbiology , Quorum Sensing/physiology , Rhodococcus/metabolism , Sewage/microbiology , Waste Disposal, Fluid/methods , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...