Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 2955, 2019.
Article in English | MEDLINE | ID: mdl-31993046

ABSTRACT

Chagas disease is caused by Trypanosoma cruzi infection and represents an important public health concern in Latin America. Macrophages are one of the main infiltrating leukocytes in response to infection. Parasite persistence could trigger a sustained activation of these cells, contributing to the damage observed in this pathology, particularly in the heart. HP24, a pyridinecarboxylic acid derivative, is a new PPARγ ligand that exerts anti-inflammatory and pro-angiogenic effects. The aim of this work was to deepen the study of the mechanisms involved in the pro-angiogenic and anti-inflammatory effects of HP24 in T. cruzi-infected macrophages, which have not yet been elucidated. We show for the first time that HP24 increases expression of VEGF-A and eNOS through PI3K/AKT/mTOR and PPARγ pathways and that HP24 inhibits iNOS expression and NO release, a pro-inflammatory mediator, through PPARγ-dependent mechanisms. Furthermore, this study shows that HP24 modulates H2O2 production in a PPARγ-dependent manner. It is also demonstrated that this new PPARγ ligand inhibits the NF-κB pathway. HP24 inhibits IKK phosphorylation and IκB-α degradation, as well as p65 translocation to the nucleus in a PPARγ-dependent manner. In Chagas disease, both the sustained increment in pro-inflammatory mediators and microvascular abnormalities are crucial aspects for the generation of cardiac damage. Elucidating the mechanism of action of new PPARγ ligands is highly attractive, given the fact that it can be used as an adjuvant therapy, particularly in the case of Chagas disease in which inflammation and tissue remodeling play an important role in the pathophysiology of this disease.


Subject(s)
Angiogenesis Inducing Agents/immunology , Antiprotozoal Agents/administration & dosage , Chagas Disease/immunology , Isonicotinic Acids/administration & dosage , Macrophages/immunology , Reactive Nitrogen Species/immunology , Reactive Oxygen Species/immunology , Animals , Anti-Inflammatory Agents/administration & dosage , Antiprotozoal Agents/chemistry , Chagas Disease/genetics , Chagas Disease/parasitology , Humans , Hydrogen Peroxide/immunology , Isonicotinic Acids/chemistry , Macrophages/drug effects , Male , Mice , Mice, Inbred BALB C , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/immunology , PPAR gamma/genetics , PPAR gamma/immunology , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/physiology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/immunology
2.
Front Immunol ; 8: 1738, 2017.
Article in English | MEDLINE | ID: mdl-29312293

ABSTRACT

Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP24, using virtual docking. Also, we showed that early treatment with HP24, decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I) both in macrophages and in the heart of T. cruzi-infected mice. Moreover, HP24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6) released by macrophages of T. cruzi-infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...