Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
BMC Biol ; 22(1): 130, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825681

ABSTRACT

BACKGROUND: Hydrogenosomes are a specific type of mitochondria that have adapted for life under anaerobiosis. Limited availability of oxygen has resulted in the loss of the membrane-associated respiratory chain, and consequently in the generation of minimal inner membrane potential (Δψ), and inefficient ATP synthesis via substrate-level phosphorylation. The changes in energy metabolism are directly linked with the organelle biogenesis. In mitochondria, proteins are imported across the outer membrane via the Translocase of the Outer Membrane (TOM complex), while two Translocases of the Inner Membrane, TIM22, and TIM23, facilitate import to the inner membrane and matrix. TIM23-mediated steps are entirely dependent on Δψ and ATP hydrolysis, while TIM22 requires only Δψ. The character of the hydrogenosomal inner membrane translocase and the mechanism of translocation is currently unknown. RESULTS: We report unprecedented modification of TIM in hydrogenosomes of the human parasite Trichomonas vaginalis (TvTIM). We show that the import of the presequence-containing protein into the hydrogenosomal matrix is mediated by the hybrid TIM22-TIM23 complex that includes three highly divergent core components, TvTim22, TvTim23, and TvTim17-like proteins. The hybrid character of the TvTIM is underlined by the presence of both TvTim22 and TvTim17/23, association with small Tim chaperones (Tim9-10), which in mitochondria are known to facilitate the transfer of substrates to the TIM22 complex, and the coupling with TIM23-specific ATP-dependent presequence translocase-associated motor (PAM). Interactome reconstruction based on co-immunoprecipitation (coIP) and mass spectrometry revealed that hybrid TvTIM is formed with the compositional variations of paralogs. Single-particle electron microscopy for the 132-kDa purified TvTIM revealed the presence of a single ring of small Tims complex, while mitochondrial TIM22 complex bears twin small Tims hexamer. TvTIM is currently the only TIM visualized outside of Opisthokonta, which raised the question of which form is prevailing across eukaryotes. The tight association of the hybrid TvTIM with ADP/ATP carriers (AAC) suggests that AAC may directly supply ATP for the protein import since ATP synthesis is limited in hydrogenosomes. CONCLUSIONS: The hybrid TvTIM in hydrogenosomes represents an original structural solution that evolved for protein import when Δψ is negligible and remarkable example of evolutionary adaptation to an anaerobic lifestyle.


Subject(s)
Protein Transport , Trichomonas vaginalis , Trichomonas vaginalis/metabolism , Protozoan Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondria/metabolism , Organelles/metabolism
2.
Front Microbiol ; 13: 893692, 2022.
Article in English | MEDLINE | ID: mdl-35602021

ABSTRACT

Trichomonas vaginalis is a parasitic protist that infects the human urogenital tract. During the infection, trichomonads adhere to the host mucosa, acquire nutrients from the vaginal/prostate environment, and release small extracellular vesicles (sEVs) that contribute to the trichomonad adherence and modulate the host-parasite communication. Approximately 40-70% of T. vaginalis strains harbor a double-stranded RNA virus called Trichomonasvirus (TVV). Naked TVV particles have the potential to stimulate a proinflammatory response in human cells, however, the mode of TVV release from trichomonads to the environment is not clear. In this report, we showed for the first time that TVV particles are released from T. vaginalis cells within sEVs. The sEVs loaded with TVV stimulated a higher proinflammatory response of human HaCaT cells in comparison to sEVs from TVV negative parasites. Moreover, a comparison of T. vaginalis isogenic TVV plus and TVV minus clones revealed a significant impact of TVV infection on the sEV proteome and RNA cargo. Small EVs from TVV positive trichomonads contained 12 enriched and 8 unique proteins including membrane-associated BspA adhesine, and about a 2.5-fold increase in the content of small regulatory tsRNA. As T. vaginalis isolates are frequently infected with TVV, the release of TVV via sEVs to the environment represents an important factor with the potential to enhance inflammation-related pathogenesis during trichomoniasis.

3.
Genes (Basel) ; 13(3)2022 03 17.
Article in English | MEDLINE | ID: mdl-35328084

ABSTRACT

Accumulated evidence suggests that the endosymbiotic Trichomonasvirus (TVV) may play a role in the pathogenesis and drug susceptibility of Trichomonas vaginalis. Several reports have shown that extracellular vesicles (EVs) released from TVV-positive (TVV+) trichomonads can modulate the immune response in human vaginal epithelial cells and animal models. These results prompted us to examine whether EVs released from TVV+ isolates contained TVV. We isolated small extracellular vesicles (sEVs) from six T. vaginalis isolates that were either TVV free (ATCC 50143), harbored a single (ATCC 30236, ATCC 30238, T1), two (ATCC PRA-98), or three TVV subspecies (ATCC 50148). The presence of TVV subspecies in the six isolates was observed using reverse transcription-polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) confirmed the presence of cup-shaped sEVs with a size range from 30-150 nm. Trichomonas vaginalis tetraspanin (TvTSP1; TVAG_019180), the classical exosome marker, was identified in all the sEV preparations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that all the sEVs isolated from TVV+ isolates contain viral capsid proteins derived from the same TVV subspecies in that isolate as demonstrated by RT-PCR. To provide more comprehensive information on the TVV subspecies population in other T. vaginalis isolates, we investigated the distribution of TVV subspecies in twenty-four isolates by mining the New-Generation Sequencing (NGS) RNAseq datasets. Our results should be beneficial for future studies investigating the role of TVV on the pathogenicity of T. vaginalis and the possible transmission of virus subspecies among different isolates via sEVs.


Subject(s)
Extracellular Vesicles , RNA Viruses , Trichomonas vaginalis , Animals , Chromatography, Liquid , Extracellular Vesicles/genetics , Female , RNA Viruses/genetics , RNA, Double-Stranded , Tandem Mass Spectrometry , Trichomonas vaginalis/genetics
4.
J Microbiol Immunol Infect ; 55(2): 191-198, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34479802

ABSTRACT

BACKGROUND: Trichomonas vaginalis is the causative agent of a sexually transmitted disease in humans. The virulence of the parasite depends on multiple factors, including the presence of endosymbiotic dsRNA viruses. The presence of Trichomonasviruses (TVV) was associated with more severe genital symptoms, increased proinflammatory host reactions, and modulated parasite sensitivity to metronidazole. However, no efficient antiviral drugs are available against TVV to derive isogenic TVV-positive and TVV-negative cell lines that are essential for investigations of the TVV impact on T. vaginalis biology. METHODS: 7-Deaza-2'-C-methyladenosine (7d2CMA) and 2'-C-methylcytidine (2CMC) were used for TVV inhibitory assay. TVV replication was monitored using quantitative reverse transcription PCR (RT qPCR) and western blotting. Modeling of TVV1 RNA-dependent RNA polymerase (RdRp) was performed to visualize the inhibitor-RdRp interaction. Susceptibility to metronidazole was performed under aerobic and anaerobic conditions. RESULTS: We demonstrated that 2CMC but not 7d2CMA is a potent inhibitor of TVV replication. Molecular modeling suggested that the RdRp active site can accommodate 2CMC in the active triphosphate nucleotide form. The effect of 2CMC was shown on strains infected with a single and multiple TVV species. The optimal 2CMC concentration (10 µM) demonstrated strong selectivity for TVVs over trichomonad growth. The presence of TVV has no effect on T. vaginalis metronidazole susceptibility in derived isogenic cell lines. CONCLUSIONS: 2CMC acts against TVVs and represents a new inhibitor against Totiviridae viruses. Our isogenic clones are now available for further studies of various aspects of T. vaginalis biology related to TVV infection.


Subject(s)
Parasites , RNA Viruses , Totiviridae , Trichomonas vaginalis , Animals , Antiviral Agents/pharmacology , Cytidine/pharmacology , Humans , Metronidazole/pharmacology , Nucleosides/pharmacology , RNA Viruses/genetics , RNA-Dependent RNA Polymerase , Totiviridae/genetics
5.
Mol Cell Proteomics ; 21(1): 100174, 2022 01.
Article in English | MEDLINE | ID: mdl-34763061

ABSTRACT

The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted ß-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.


Subject(s)
Cysteine Proteases , Trichomonas vaginalis , Cysteine/metabolism , Cysteine Proteases/metabolism , Humans , Lysosomes/metabolism , Peptide Hydrolases/metabolism , Phagosomes/metabolism , Proteomics , Trichomonas vaginalis/metabolism
6.
PLoS Pathog ; 17(11): e1010041, 2021 11.
Article in English | MEDLINE | ID: mdl-34780573

ABSTRACT

Entamoeba histolytica is believed to be devoid of peroxisomes, like most anaerobic protists. In this work, we provided the first evidence that peroxisomes are present in E. histolytica, although only seven proteins responsible for peroxisome biogenesis (peroxins) were identified (Pex1, Pex6, Pex5, Pex11, Pex14, Pex16, and Pex19). Targeting matrix proteins to peroxisomes is reduced to the PTS1-dependent pathway mediated via the soluble Pex5 receptor, while the PTS2 receptor Pex7 is absent. Immunofluorescence microscopy showed that peroxisomal markers (Pex5, Pex14, Pex16, Pex19) are present in vesicles distinct from mitosomes, the endoplasmic reticulum, and the endosome/phagosome system, except Pex11, which has dual localization in peroxisomes and mitosomes. Immunoelectron microscopy revealed that Pex14 localized to vesicles of approximately 90-100 nm in diameter. Proteomic analyses of affinity-purified peroxisomes and in silico PTS1 predictions provided datasets of 655 and 56 peroxisomal candidates, respectively; however, only six proteins were shared by both datasets, including myo-inositol dehydrogenase (myo-IDH). Peroxisomal NAD-dependent myo-IDH appeared to be a dimeric enzyme with high affinity to myo-inositol (Km 0.044 mM) and can utilize also scyllo-inositol, D-glucose and D-xylose as substrates. Phylogenetic analyses revealed that orthologs of myo-IDH with PTS1 are present in E. dispar, E. nutalli and E. moshkovskii but not in E. invadens, and form a monophyletic clade of mostly peroxisomal orthologs with free-living Mastigamoeba balamuthi and Pelomyxa schiedti. The presence of peroxisomes in E. histolytica and other archamoebae breaks the paradigm of peroxisome absence in anaerobes and provides a new potential target for the development of antiparasitic drugs.


Subject(s)
Entamoeba histolytica/metabolism , Inositol/metabolism , Mutation , Peroxisomal Targeting Signals , Peroxisomes/metabolism , Protozoan Proteins/metabolism , Anaerobiosis , Peroxins/metabolism , Phylogeny , Protozoan Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 117(4): 2065-2075, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31932444

ABSTRACT

The adaptation of eukaryotic cells to anaerobic conditions is reflected by substantial changes to mitochondrial metabolism and functional reduction. Hydrogenosomes belong among the most modified mitochondrial derivative and generate molecular hydrogen concomitant with ATP synthesis. The reduction of mitochondria is frequently associated with loss of peroxisomes, which compartmentalize pathways that generate reactive oxygen species (ROS) and thus protect against cellular damage. The biogenesis and function of peroxisomes are tightly coupled with mitochondria. These organelles share fission machinery components, oxidative metabolism pathways, ROS scavenging activities, and some metabolites. The loss of peroxisomes in eukaryotes with reduced mitochondria is thus not unexpected. Surprisingly, we identified peroxisomes in the anaerobic, hydrogenosome-bearing protist Mastigamoeba balamuthi We found a conserved set of peroxin (Pex) proteins that are required for protein import, peroxisomal growth, and division. Key membrane-associated Pexs (MbPex3, MbPex11, and MbPex14) were visualized in numerous vesicles distinct from hydrogenosomes, the endoplasmic reticulum (ER), and Golgi complex. Proteomic analysis of cellular fractions and prediction of peroxisomal targeting signals (PTS1/PTS2) identified 51 putative peroxisomal matrix proteins. Expression of selected proteins in Saccharomyces cerevisiae revealed specific targeting to peroxisomes. The matrix proteins identified included components of acyl-CoA and carbohydrate metabolism and pyrimidine and CoA biosynthesis, whereas no components related to either ß-oxidation or catalase were present. In conclusion, we identified a subclass of peroxisomes, named "anaerobic" peroxisomes that shift the current paradigm and turn attention to the reductive evolution of peroxisomes in anaerobic organisms.


Subject(s)
Archamoebae/metabolism , Peroxisomes/metabolism , Anaerobiosis , Archamoebae/genetics , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Peroxins/genetics , Peroxins/metabolism , Peroxisomes/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Reactive Oxygen Species/metabolism
8.
J Eukaryot Microbiol ; 66(6): 899-910, 2019 11.
Article in English | MEDLINE | ID: mdl-31077495

ABSTRACT

The enzymes pyruvate ferredoxin oxidoreductase (PFO), malic enzyme (ME), and the α- and ß-subunits of succinyl-CoA synthetase (SCS) catalyze key steps of energy metabolism in Trichomonas vaginalis hydrogenosomes. These proteins have also been characterized as the adhesins AP120 (PFO), AP65 (ME), AP33, and AP51 (α- and ß-SCS), which are localized on the cell surface and mediate the T. vaginalis cytoadherence. However, the mechanisms that facilitate the targeting of these proteins to the cell surface via the secretory pathway and/or to hydrogenosomes are not known. Here we adapted an in vivo biotinylation system to perform highly sensitive tracing of protein trafficking in T. vaginalis. We showed that α- and ß-SCS are biotinylated in the cytosol and imported exclusively into the hydrogenosomes. Neither α- nor ß-SCS is biotinylated in the endoplasmic reticulum and delivered to the cell surface via the secretory pathway. In contrast, two surface proteins, tetratricopeptide domain-containing membrane-associated protein and tetraspanin family surface protein, as well as soluble-secreted ß-amylase-1 are biotinylated in the endoplasmic reticulum and delivered through the secretory pathway to their final destinations. Taken together, these results demonstrate that the α- and ß-SCS subunits are targeted only to the hydrogenosomes, which argues against their putative moonlighting function.


Subject(s)
Protein Transport , Protozoan Proteins/genetics , Succinate-CoA Ligases/genetics , Trichomonas vaginalis/genetics , Biotinylation , Protozoan Proteins/metabolism , Secretory Pathway , Succinate-CoA Ligases/metabolism , Trichomonas vaginalis/enzymology
9.
PLoS Biol ; 17(1): e3000098, 2019 01.
Article in English | MEDLINE | ID: mdl-30608924

ABSTRACT

Mitochondria originated from proteobacterial endosymbionts, and their transition to organelles was tightly linked to establishment of the protein import pathways. The initial import of most proteins is mediated by the translocase of the outer membrane (TOM). Although TOM is common to all forms of mitochondria, an unexpected diversity of subunits between eukaryotic lineages has been predicted. However, experimental knowledge is limited to a few organisms, and so far, it remains unsettled whether the triplet-pore or the twin-pore structure is the generic form of TOM complex. Here, we analysed the TOM complex in hydrogenosomes, a metabolically specialised anaerobic form of mitochondria found in the excavate Trichomonas vaginalis. We demonstrate that the highly divergent ß-barrel T. vaginalis TOM (TvTom)40-2 forms a translocation channel to conduct hydrogenosomal protein import. TvTom40-2 is present in high molecular weight complexes, and their analysis revealed the presence of four tail-anchored (TA) proteins. Two of them, Tom36 and Tom46, with heat shock protein (Hsp)20 and tetratricopeptide repeat (TPR) domains, can bind hydrogenosomal preproteins and most likely function as receptors. A third subunit, Tom22-like protein, has a short cis domain and a conserved Tom22 transmembrane segment but lacks a trans domain. The fourth protein, hydrogenosomal outer membrane protein 19 (Homp19) has no known homology. Furthermore, our data indicate that TvTOM is associated with sorting and assembly machinery (Sam)50 that is involved in ß-barrel assembly. Visualisation of TvTOM by electron microscopy revealed that it forms three pores and has an unconventional skull-like shape. Although TvTOM seems to lack Tom7, our phylogenetic profiling predicted Tom7 in free-living excavates. Collectively, our results suggest that the triplet-pore TOM complex, composed of three conserved subunits, was present in the last common eukaryotic ancestor (LECA), while receptors responsible for substrate binding evolved independently in different eukaryotic lineages.


Subject(s)
Carrier Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Trichomonas vaginalis/metabolism , Carrier Proteins/genetics , Carrier Proteins/physiology , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Organelles , Phylogeny , Protein Transport/physiology , Trichomonas vaginalis/pathogenicity , Trichomonas vaginalis/physiology
10.
Mol Microbiol ; 111(3): 588-603, 2019 03.
Article in English | MEDLINE | ID: mdl-30506591

ABSTRACT

Tail-anchored (TA) proteins are membrane proteins that are found in all domains of life. They consist of an N-terminal domain that performs various functions and a single transmembrane domain (TMD) near the C-terminus. In eukaryotes, TA proteins are targeted to the membranes of mitochondria, the endoplasmic reticulum (ER), peroxisomes and in plants, chloroplasts. The targeting of these proteins to their specific destinations correlates with the properties of the C-terminal domain, mainly the TMD hydrophobicity and the net charge of the flanking regions. Trichomonas vaginalis is a human parasite that has adapted to oxygen-poor environment. This adaptation is reflected by the presence of highly modified mitochondria (hydrogenosomes) and the absence of peroxisomes. The proteome of hydrogenosomes is considerably reduced; however, our bioinformatic analysis predicted 120 putative hydrogenosomal TA proteins. Seven proteins were selected to prove their localization. The elimination of the net positive charge in the C-tail of the hydrogenosomal TA4 protein resulted in its dual localization to hydrogenosomes and the ER, causing changes in ER morphology. Domain mutation and swap experiments with hydrogenosomal (TA4) and ER (TAPDI) proteins indicated that the general principles for specific targeting are conserved across eukaryotic lineages, including T. vaginalis; however, there are also significant lineage-specific differences.


Subject(s)
Multienzyme Complexes/metabolism , Organelles/metabolism , Protozoan Proteins/metabolism , Trichomonas vaginalis/enzymology , DNA Mutational Analysis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Transport , Protozoan Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
11.
Mol Cell Proteomics ; 17(2): 304-320, 2018 02.
Article in English | MEDLINE | ID: mdl-29233912

ABSTRACT

The secretion of virulence factors by parasitic protists into the host environment plays a fundamental role in multifactorial host-parasite interactions. Several effector proteins are known to be secreted by Trichomonas vaginalis, a human parasite of the urogenital tract. However, a comprehensive profiling of the T. vaginalis secretome remains elusive, as do the mechanisms of protein secretion. In this study, we used high-resolution label-free quantitative MS to analyze the T. vaginalis secretome, considering that secretion is a time- and temperature-dependent process, to define the cutoff for secreted proteins. In total, we identified 2 072 extracellular proteins, 89 of which displayed significant quantitative increases over time at 37 °C. These 89 bona fide secreted proteins were sorted into 13 functional categories. Approximately half of the secreted proteins were predicted to possess transmembrane helixes. These proteins mainly include putative adhesins and leishmaniolysin-like metallopeptidases. The other half of the soluble proteins include several novel potential virulence factors, such as DNaseII, pore-forming proteins, and ß-amylases. Interestingly, current bioinformatic tools predicted the secretory signal in only 18% of the identified T. vaginalis-secreted proteins. Therefore, we used ß-amylases as a model to investigate the T. vaginalis secretory pathway. We demonstrated that two ß-amylases (BA1 and BA2) are transported via the classical endoplasmic reticulum-to-Golgi pathways, and in the case of BA1, we showed that the protein is glycosylated with multiple N-linked glycans of Hex5HexNAc2 structure. The secretion was inhibited by brefeldin A but not by FLI-06. Another two ß-amylases (BA3 and BA4), which are encoded in the T. vaginalis genome but absent from the secretome, were targeted to the lysosomal compartment. Collectively, under defined in vitro conditions, our analysis provides a comprehensive set of constitutively secreted proteins that can serve as a reference for future comparative studies, and it provides the first information about the classical secretory pathway in this parasite.


Subject(s)
Protozoan Proteins/metabolism , Trichomonas vaginalis/metabolism , beta-Amylase/metabolism , Phylogeny , Protozoan Proteins/genetics , Trichomonas vaginalis/genetics
12.
Eukaryot Cell ; 14(12): 1264-75, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26475173

ABSTRACT

Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to "short" bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution.


Subject(s)
Hydrogen/metabolism , Organelles/metabolism , Phosphofructokinases/chemistry , Phosphofructokinases/metabolism , Trichomonas vaginalis/enzymology , Adenosine Triphosphate/pharmacology , Amino Acid Sequence , Diphosphates/metabolism , Ferredoxins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Sequence Data , Organelles/drug effects , Phylogeny , Promoter Regions, Genetic/genetics , Protein Transport/drug effects , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Sequence Alignment , Trichomonas vaginalis/drug effects
13.
Genome Biol Evol ; 7(9): 2716-26, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26338186

ABSTRACT

The origin of protein import was a key step in the endosymbiotic acquisition of mitochondria. Though the main translocon of the mitochondrial outer membrane, TOM40, is ubiquitous among organelles of mitochondrial ancestry, the transit peptides, or N-terminal targeting sequences (NTSs), recognised by the TOM complex, are not. To better understand the nature of evolutionary conservation in mitochondrial protein import, we investigated the targeting behavior of Trichomonas vaginalis hydrogenosomal proteins in Saccharomyces cerevisiae and vice versa. Hydrogenosomes import yeast mitochondrial proteins even in the absence of their native NTSs, but do not import yeast cytosolic proteins. Conversely, yeast mitochondria import hydrogenosomal proteins with and without their short NTSs. Conservation of an NTS-independent mitochondrial import route from excavates to opisthokonts indicates its presence in the eukaryote common ancestor. Mitochondrial protein import is known to entail electrophoresis of positively charged NTSs across the electrochemical gradient of the inner mitochondrial membrane. Our present findings indicate that mitochondrial transit peptides, which readily arise from random sequences, were initially selected as a signal for charge-dependent protein targeting specifically to the mitochondrial matrix. Evolutionary loss of the electron transport chain in hydrogenosomes and mitosomes lifted the selective constraints that maintain positive charge in NTSs, allowing first the NTS charge, and subsequently the NTS itself, to be lost. This resulted in NTS-independent matrix targeting, which is conserved across the evolutionary divide separating trichomonads and yeast, and which we propose is the ancestral state of mitochondrial protein import.


Subject(s)
Evolution, Molecular , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Sorting Signals , Mitochondrial Proteins/chemistry , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Trichomonas vaginalis/metabolism
14.
PLoS One ; 8(5): e65148, 2013.
Article in English | MEDLINE | ID: mdl-23741475

ABSTRACT

Iron plays a crucial role in metabolism as a key component of catalytic and redox cofactors, such as heme or iron-sulfur clusters in enzymes and electron-transporting or regulatory proteins. Limitation of iron availability by the host is also one of the mechanisms involved in immunity. Pathogens must regulate their protein expression according to the iron concentration in their environment and optimize their metabolic pathways in cases of limitation through the availability of respective cofactors. Trichomonas vaginalis, a sexually transmitted pathogen of humans, requires high iron levels for optimal growth. It is an anaerobe that possesses hydrogenosomes, mitochondrion-related organelles that harbor pathways of energy metabolism and iron-sulfur cluster assembly. We analyzed the proteomes of hydrogenosomes obtained from cells cultivated under iron-rich and iron-deficient conditions employing two-dimensional peptide separation combining IEF and nano-HPLC with quantitative MALDI-MS/MS. We identified 179 proteins, of which 58 were differentially expressed. Iron deficiency led to the upregulation of proteins involved in iron-sulfur cluster assembly and the downregulation of enzymes involved in carbohydrate metabolism. Interestingly, iron affected the expression of only some of multiple protein paralogues, whereas the expression of others was iron independent. This finding indicates a stringent regulation of differentially expressed multiple gene copies in response to changes in the availability of exogenous iron.


Subject(s)
Iron/metabolism , Organelles/metabolism , Proteome/metabolism , Trichomonas vaginalis/metabolism , Cluster Analysis , Energy Metabolism , Gene Expression Regulation , Humans , Mass Spectrometry , Organelles/ultrastructure , Oxidation-Reduction , Proteomics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sulfur/metabolism , Trichomonas vaginalis/genetics
15.
PLoS One ; 6(9): e24428, 2011.
Article in English | MEDLINE | ID: mdl-21935410

ABSTRACT

Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM) and inner membrane (TIM) protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the ß-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences that reflect the functional adaptation of hydrogenosomes to anaerobic conditions and the peculiar evolutionary history of the Excavata group.


Subject(s)
Membrane Proteins/metabolism , Organelles/metabolism , Protozoan Proteins/metabolism , Trichomonas vaginalis/metabolism , Amino Acid Sequence , Biological Transport/physiology , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Membrane Proteins/chemistry , Mitochondria/metabolism , Molecular Sequence Data , Porins/metabolism , Protozoan Proteins/chemistry , Sequence Homology, Amino Acid
16.
PLoS One ; 6(2): e17285, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21390322

ABSTRACT

The mitosomes of Giardia intestinalis are thought to be mitochondria highly-reduced in response to the oxygen-poor niche. We performed a quantitative proteomic assessment of Giardia mitosomes to increase understanding of the function and evolutionary origin of these enigmatic organelles. Mitosome-enriched fractions were obtained from cell homogenate using Optiprep gradient centrifugation. To distinguish mitosomal proteins from contamination, we used a quantitative shot-gun strategy based on isobaric tagging of peptides with iTRAQ and tandem mass spectrometry. Altogether, 638 proteins were identified in mitosome-enriched fractions. Of these, 139 proteins had iTRAQ ratio similar to that of the six known mitosomal markers. Proteins were selected for expression in Giardia to verify their cellular localizations and the mitosomal localization of 20 proteins was confirmed. These proteins include nine components of the FeS cluster assembly machinery, a novel diflavo-protein with NADPH reductase activity, a novel VAMP-associated protein, and a key component of the outer membrane protein translocase. None of the novel mitosomal proteins was predicted by previous genome analyses. The small proteome of the Giardia mitosome reflects the reduction in mitochondrial metabolism, which is limited to the FeS cluster assembly pathway, and a simplicity in the protein import pathway required for organelle biogenesis.


Subject(s)
Giardia lamblia/metabolism , Mitochondria/metabolism , Mitochondrial Size/physiology , Proteome/analysis , Amino Acid Sequence , Animals , Cluster Analysis , Evolution, Molecular , Mitochondrial Proteins/analysis , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Parasites/metabolism , Protein Folding , Protein Multimerization , Proteome/metabolism , Tandem Mass Spectrometry
17.
Eukaryot Cell ; 8(10): 1584-91, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19717741

ABSTRACT

The highly reduced mitochondria (mitosomes) of Giardia intestinalis are recently discovered organelles for which, it was suggested, iron-sulfur cluster assembly was their only conserved function. However, only an incomplete set of the components required for FeS cluster biogenesis was localized to the mitosomes. Via proteomic analysis of a mitosome-rich cellular fraction together with immunofluorescence microscopy, we identified a novel mitosomal protein homologous to monothiol glutaredoxins containing a CGFS motif at the active site. Sequence analysis revealed the presence of long nonconserved N-terminal extension of 77 amino acids, which was absent in the mature protein. Expression of the complete and N-terminally truncated forms of the glutaredoxin indicated that the extension is involved in glutaredoxin import into mitosomes. However, the mechanism of preprotein processing is unclear, as the mitosomal processing peptidase is unable to cleave this type of extension. The recombinant mature protein was shown to form a homodimeric structure, which binds a labile FeS cluster. The cluster is stabilized by glutathione and dithiothreitol. Phylogenetic analysis showed that giardial glutaredoxin is related to the mitochondrial monothiol glutaredoxins involved in FeS cluster assembly. The identification of a mitochondrial-type monothiol glutaredoxin in the mitosomes of G. intestinalis thus completes the mitosomal FeS cluster biosynthetic pathway and provides further evidence for the mitochondrial origin of these organelles.


Subject(s)
Giardia lamblia/metabolism , Glutaredoxins/chemistry , Mitochondria/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Microscopy, Fluorescence , Phylogeny , Sequence Alignment
18.
Proc Natl Acad Sci U S A ; 102(31): 10924-9, 2005 Aug 02.
Article in English | MEDLINE | ID: mdl-16040811

ABSTRACT

Mitochondria are archetypal organelles of endosymbiotic origin in eukaryotic cells. Some unicellular eukaryotes (protists) were considered to be primarily amitochondrial organisms that diverged from the eukaryotic lineage before the acquisition of the premitochondrial endosymbiont, but their amitochondrial status was recently challenged by the discovery of mitochondria-like double membrane-bound organelles called mitosomes. Here, we report that proteins targeted into mitosomes of Giardia intestinalis have targeting signals necessary and sufficient to be recognized by the mitosomal protein import machinery. Expression of these mitosomal proteins in Trichomonas vaginalis results in targeting to hydrogenosomes, a hydrogen-producing form of mitochondria. We identify, in Giardia and Trichomonas, proteins related to the component of the translocase in the inner membrane from mitochondria and the processing peptidase. A shared mode of protein targeting supports the hypothesis that mitosomes, hydrogenosomes, and mitochondria represent different forms of the same fundamental organelle having evolved under distinct selection pressures.


Subject(s)
Giardia lamblia/metabolism , Protozoan Proteins/metabolism , Trichomonas vaginalis/metabolism , Amino Acid Sequence , Animals , Biological Transport, Active , Evolution, Molecular , Ferredoxins/genetics , Ferredoxins/metabolism , Giardia lamblia/genetics , Giardia lamblia/ultrastructure , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Molecular Sequence Data , Organelles/metabolism , Protein Processing, Post-Translational , Protozoan Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Trichomonas vaginalis/genetics , Trichomonas vaginalis/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...