Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 05 30.
Article in English | MEDLINE | ID: mdl-37249212

ABSTRACT

Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.


Subject(s)
Neocortex , Humans , Neocortex/physiology , Synaptic Transmission/physiology , In Situ Hybridization, Fluorescence , Prospective Studies , Neurons/physiology , Pyramidal Cells/physiology , Synapses/physiology , Interneurons/physiology
2.
Science ; 375(6585): eabj5861, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35271334

ABSTRACT

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.


Subject(s)
Neocortex/physiology , Neural Pathways , Neurons/physiology , Synapses/physiology , Synaptic Transmission , Adult , Animals , Datasets as Topic , Excitatory Postsynaptic Potentials , Female , Humans , Inhibitory Postsynaptic Potentials , Male , Mice , Mice, Transgenic , Models, Neurological , Neocortex/cytology , Temporal Lobe/cytology , Temporal Lobe/physiology , Visual Cortex/cytology , Visual Cortex/physiology
3.
Neuron ; 109(18): 2914-2927.e5, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34534454

ABSTRACT

In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The unique morpho-electric properties of these neurons have been mainly described in rodents, where retrograde tracers or transgenic lines can label them. Similar labeling strategies are infeasible in the human neocortex, rendering the translational relevance of findings in rodents unclear. We leveraged the recent discovery of a transcriptomically defined L5 ET neuron type to study the properties of human L5 ET neurons in neocortical brain slices derived from neurosurgeries. Patch-seq recordings, where transcriptome, physiology, and morphology were assayed from the same cell, revealed many conserved morpho-electric properties of human and rodent L5 ET neurons. Divergent properties were often subtler than differences between L5 cell types within these two species. These data suggest a conserved function of L5 ET neurons in the neocortical hierarchy but also highlight phenotypic divergence possibly related to functional specialization of human neocortex.


Subject(s)
Dendrites/physiology , Morphogenesis/physiology , Neocortex/cytology , Neocortex/physiology , Pyramidal Cells/physiology , Transcriptome/physiology , Action Potentials/physiology , Adult , Animals , Female , Humans , Macaca nemestrina , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Organ Culture Techniques , Patch-Clamp Techniques/methods
4.
Cell Rep ; 34(13): 108754, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33789096

ABSTRACT

Viral genetic tools that target specific brain cell types could transform basic neuroscience and targeted gene therapy. Here, we use comparative open chromatin analysis to identify thousands of human-neocortical-subclass-specific putative enhancers from across the genome to control gene expression in adeno-associated virus (AAV) vectors. The cellular specificity of reporter expression from enhancer-AAVs is established by molecular profiling after systemic AAV delivery in mouse. Over 30% of enhancer-AAVs produce specific expression in the targeted subclass, including both excitatory and inhibitory subclasses. We present a collection of Parvalbumin (PVALB) enhancer-AAVs that show highly enriched expression not only in cortical PVALB cells but also in some subcortical PVALB populations. Five vectors maintain PVALB-enriched expression in primate neocortex. These results demonstrate how genome-wide open chromatin data mining and cross-species AAV validation can be used to create the next generation of non-species-restricted viral genetic tools.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , Neocortex/metabolism , Animals , Chromatin/genetics , Chromatin/metabolism , Databases, Genetic , Dependovirus/genetics , Disease/genetics , Epigenesis, Genetic , Genetic Vectors/metabolism , Genome , Humans , Mice , Neurons/metabolism , Parvalbumins/metabolism , Primates , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...