Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotoxicology ; 11(9-10): 1157-1175, 2017.
Article in English | MEDLINE | ID: mdl-29192556

ABSTRACT

Nanoparticles (NPs) are easily contaminated by bacterial endotoxin (lipopolysaccharide [LPS]). The presence of LPS can be responsible for many immune/inflammatory effects attributed to NPs. In this study, we examined the effects of LPS adsorption on the NP surface on the formation of a biocorona in biological fluids and on the subsequent inflammation-inducing activity of NPs. Different gold (Au) NPs with sizes ranging from 10 to 80 nm and with different surface functionalization (sodium citrate, lipoic acid, and branched polyethyleneimine (BPEI), or polyethylene glycol (PEG)) were exposed to E. coli LPS under different conditions. The binding capacity of LPS to the surface of AuNPs was dose- and time-dependent. LPS attached to sodium citrate and lipoic acid coatings, but did not adhere to BPEI- or PEG-coated NPs. By computational simulation, the binding of LPS to AuNPs seems to follow the Langmuir absorption isotherm. The presence of LPS on AuNP surface interfered and caused a decrease in the formation of the expected biomolecular corona upon incubation in human plasma. LPS-coated AuNPs, but not the LPS-free NPs, induced significant inflammatory responses in vitro. Notably, while free LPS did also induce an anti-inflammatory response, LPS bound to NPs appeared unable to do so. In conclusion, the unintentional adsorption of LPS onto the NP surface can affect the biocorona formation and the inflammatory properties of NPs. Thus, for an accurate interpretation of NP interactions with cells, it is extremely important to be able to distinguish the intrinsic NP biological effects from those caused by biologically active contaminants such as endotoxin.


Subject(s)
Gold/toxicity , Lipopolysaccharides/toxicity , Metal Nanoparticles/toxicity , Monocytes/drug effects , Protein Corona/analysis , Adsorption , Blood Proteins/chemistry , Computational Biology , Gold/chemistry , HEK293 Cells , Humans , Inflammation , Interleukin-1/biosynthesis , Lipopolysaccharides/chemistry , Metal Nanoparticles/chemistry , Models, Biological , Monocytes/immunology , Particle Size , Surface Properties
2.
Arch Toxicol ; 91(6): 2315-2330, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27942788

ABSTRACT

The rapid development of nanotechnologies and increased production and use of nanomaterials raise concerns about their potential toxic effects for human health and environment. To evaluate the biological effects of nanomaterials, a set of reliable and reproducible methods and development of standard operating procedures (SOPs) is required. In the framework of the European FP7 NanoValid project, three different cell viability assays (MTS, ATP content, and caspase-3/7 activity) with different readouts (absorbance, luminescence and fluorescence) and two immune assays (ELISA of pro-inflammatory cytokines IL1-ß and TNF-α) were evaluated by inter-laboratory comparison. The aim was to determine the suitability and reliability of these assays for nanosafety assessment. Studies on silver and copper oxide nanoparticles (NPs) were performed, and SOPs for particle handling, cell culture, and in vitro assays were established or adapted. These SOPs give precise descriptions of assay procedures, cell culture/seeding conditions, NPs/positive control preparation and dilutions, experimental well plate preparation, and evaluation of NPs interference. The following conclusions can be highlighted from the pan-European inter-laboratory studies: Testing of NPs interference with the toxicity assays should always be conducted. Interference tests should be designed as close as possible to the cell exposure conditions. ATP and MTS assays gave consistent toxicity results with low inter-laboratory variability using Ag and CuO NPs and different cell lines and therefore, could be recommended for further validation and standardization. High inter-laboratory variability was observed for Caspase 3/7 assay and ELISA for IL1-ß and TNF-α measurements.


Subject(s)
Copper/toxicity , Cytokines/metabolism , Laboratories/standards , Metal Nanoparticles/toxicity , Silver/toxicity , Toxicity Tests/standards , Biological Assay/methods , Biological Assay/standards , Cell Line, Tumor , Cell Survival/drug effects , Copper/chemistry , Europe , Humans , Metal Nanoparticles/chemistry , Particle Size , Reproducibility of Results , Silver/chemistry , Surface Properties , Toxicity Tests/methods
3.
Part Fibre Toxicol ; 13: 3, 2016 Jan 16.
Article in English | MEDLINE | ID: mdl-26772182

ABSTRACT

BACKGROUND: Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule 'corona'. Hence, the 'corona' defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. METHODS: Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. RESULTS: The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was found. CONCLUSION: In summary, this study presents that conjugation of allergens to ENMs can modulate the human allergic response, and that protease activity can be increased. Graphical Abstract Cross-linking of IgE receptors and degranulation of human basophils due to epitope alignment of nanoparticle-coated allergens.


Subject(s)
Allergens/immunology , Alveolar Epithelial Cells/immunology , Antigens, Dermatophagoides/immunology , Antigens, Plant/immunology , Arthropod Proteins/immunology , Basophils/immunology , Cysteine Endopeptidases/immunology , Gold/immunology , Plant Proteins/immunology , Protein Corona/immunology , Allergens/metabolism , Alveolar Epithelial Cells/metabolism , Antigens, Dermatophagoides/metabolism , Antigens, Plant/metabolism , Arthropod Proteins/metabolism , Basophils/metabolism , Cell Line, Tumor , Cysteine Endopeptidases/metabolism , Gold/metabolism , Humans , Metal Nanoparticles , Nanomedicine/methods , Peptide Hydrolases/metabolism , Permeability , Plant Proteins/metabolism , Protein Binding , Protein Corona/metabolism , Tight Junctions/immunology , Tight Junctions/metabolism , Time Factors
4.
Part Fibre Toxicol ; 12: 29, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26415698

ABSTRACT

BACKGROUND: Stably transfected lung epithelial reporter cell lines pose an advantageous alternative to replace complex experimental techniques to monitor the pro-inflammatory response following nanoparticle (NP) exposure. Previously, reporter cell lines have been used under submerged culture conditions, however, their potential usefulness in combination with air-liquid interface (ALI) exposures is currently unknown. Therefore, the aim of the present study was to compare a panel of interleukin-8 promoter (pIL8)-reporter cell lines (i.e. green or red fluorescent protein (GFP, RFP), and luciferase (Luc)), originating from A549 lung epithelial type II-like cells cells, following NPs exposure under both submerged and ALI conditions. METHODS: All cell lines were exposed to zinc oxide (ZnO) NPs at 0.6 and 6.2 µg/cm(2) for 3 and 16 hours under both submerged and ALI conditions. Following physicochemical characterization, the cytotoxic profile of the ZnO-NPs was determined for each exposure scenario. Expression of IL-8 from all cell types was analyzed at the promoter level and compared to the mRNA (qRT-PCR) and protein level (ELISA). RESULTS: In summary, each reporter cell line detected acute pro-inflammatory effects following ZnO exposure under each condition tested. The pIL8-Luc cell line was the most sensitive in terms of reporter signal strength and onset velocity following TNF-α treatment. Both pIL8-GFP and pIL8-RFP also showed a marked signal induction in response to TNF-α, although only after 16 hrs. In terms of ZnO-NP-induced cytotoxicity pIL8-RFP cells were the most affected, whilst the pIL8-Luc were found the least responsive. CONCLUSIONS: In conclusion, the use of fluorescence-based reporter cell lines can provide a useful tool in screening the pro-inflammatory response following NP exposure in both submerged and ALI cell cultures.


Subject(s)
Genes, Reporter , Inflammation/chemically induced , Interleukin-8/genetics , Lung/metabolism , Metal Nanoparticles/toxicity , Zinc Oxide/toxicity , Cell Line , Epithelial Cells/metabolism , Humans , Inflammation/metabolism , Lung/cytology
5.
Toxicol In Vitro ; 29(2): 345-51, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25433334

ABSTRACT

Studying the effects of hydrophobic chemicals using in vitro cell based methods is hindered by the difficulty in bringing and keeping these chemicals in solution. Their effective concentrations are often lower than their nominal concentrations. Passive dosing is one approach that provides defined and stable dissolved concentrations during in vitro testing, and was applied to control and maintain freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs) at levels up to their aqueous solubility limit. The immunomodulatory effects of 9 different PAHs at aqueous solubility on human bronchial epithelial cells were determined by analysing the cytokine promoter expression of 4 different inflammatory cytokines using stably transfected recombinant A549 cell lines. Diverse immunomodulatory responses were found with the highest induction observed for the most hydrophobic PAHs chrysene, benzo(a)antracene and benzo(a)pyrene. Cytokine promoter expression was then studied in dose response experiments with acenaphthene, phenanthrene and benzo(a)anthracene. The strongest induction was observed for benzo(a)anthracene. Cell viability analysis was performed and showed that none of the PAHs induced cytotoxicity at any of the concentrations tested. Overall, this study shows that (1) immunomodulatory effects of PAHs can be studied in vitro at controlled freely dissolved concentrations, (2) the most hydrophobic PAHs were the strongest inducers and (3) induction was often higher at lower exposure levels and decreased then with concentration despite the apparent absence of cytotoxicity.


Subject(s)
Immunologic Factors/administration & dosage , Immunologic Factors/toxicity , Polycyclic Aromatic Hydrocarbons/administration & dosage , Polycyclic Aromatic Hydrocarbons/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Immunologic Factors/chemistry , Interleukin-8/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Promoter Regions, Genetic , Silicones/administration & dosage , Silicones/chemistry , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...