Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioenergetics ; 6(1)2017.
Article in English | MEDLINE | ID: mdl-28944107

ABSTRACT

Butyrylcholinesterase is a key enzyme that catalyzes the hydrolysis of the neurotransmitter acetylcholine and shows an increased activity in patients suffering from Alzheimer's disease (AD), making this enzyme a primary target in treating AD. Central to this problem, and to similar scenarios involving biomolecular recognition, is our understanding of the nature of the protein-ligand complex. The butyrylcholinesterase enzyme was studied via all-atom, explicit solvent, ensemble molecular dynamics simulations sans inhibitor and in the presence of three dialkyl phenyl phosphate inhibitors of known potency to a cumulative sampling of over 40 µs. Following the relaxation of these ensembles to conformational equilibria, binding modes for each inhibitor were identified. While classical models, which assume significant reduction in protein and ligand conformational entropies, continue to be favored in contemporary studies, our observations contradict those assumptions: bound ligands occupy many conformational states, thereby stabilizing the complex, while also promoting protein flexibility.

2.
Nucleic Acids Res ; 45(8): 4893-4904, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28115636

ABSTRACT

Massive all-atom molecular dynamics simulations were conducted across a distributed computing network to study the folding, unfolding, misfolding and conformational plasticity of the high-efficiency frameshifting double mutant of the 26 nt potato leaf roll virus RNA pseudoknot. Our robust sampling, which included over 40 starting structures spanning the spectrum from the extended unfolded state to the native fold, yielded nearly 120 µs of cumulative sampling time. Conformational microstate transitions on the 1.0 ns to 10.0 µs timescales were observed, with post-equilibration sampling providing detailed representations of the conformational free energy landscape and the complex folding mechanism inherent to the pseudoknot motif. Herein, we identify and characterize two alternative native structures, three intermediate states, and numerous misfolded states, the latter of which have not previously been characterized via atomistic simulation techniques. While in line with previous thermodynamics-based models of a general RNA folding mechanism, our observations indicate that stem-strand-sequence-separation may serve as an alternative predictor of the order of stem formation during pseudoknot folding. Our results contradict a model of frameshifting based on structural rigidity and resistance to mechanical unfolding, and instead strongly support more recent studies in which conformational plasticity is identified as a determining factor in frameshifting efficiency.


Subject(s)
Frameshifting, Ribosomal/genetics , Nucleic Acid Conformation , RNA Folding/genetics , RNA, Viral/genetics , Molecular Dynamics Simulation , Plant Leaves/virology , Plant Viruses/chemistry , Plant Viruses/genetics , RNA, Viral/chemistry , Solanum tuberosum/virology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...