Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 129(2): 314-28, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26644180

ABSTRACT

Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation and functions are tightly regulated by its post-translational modifications. AnxA2 and its Tyr23-phosphorylated form (pTyr23AnxA2) are involved in malignant cell transformation, metastasis and angiogenesis. Here, we show that H2O2 exerts rapid, simultaneous and opposite effects on the Tyr23 phosphorylation status of AnxA2 in two distinct compartments of rat pheochromocytoma (PC12) cells. Reactive oxygen species induce dephosphorylation of pTyr23AnxA2 located in the PML bodies of the nucleus, whereas AnxA2 associated with F-actin at the cell cortex is Tyr23 phosphorylated. The H2O2-induced responses in both compartments are transient and the pTyr23AnxA2 accumulating at the cell cortex is subsequently incorporated into vesicles and then released to the extracellular space. Blocking nuclear export by leptomycin B does not affect the nuclear pool of pTyr23AnxA2, but increases the amount of total AnxA2 in this compartment, indicating that the protein might have several functions in the nucleus. These results suggest that Tyr23 phosphorylation can regulate the function of AnxA2 at distinct subcellular sites.


Subject(s)
Annexin A2/metabolism , Protein Processing, Post-Translational , Reactive Oxygen Species/metabolism , Actins/metabolism , Animals , Cell Membrane , Cell Nucleus/metabolism , Extracellular Vesicles/metabolism , Hydrogen Peroxide/pharmacology , Oxidative Stress , PC12 Cells , Phosphorylation , Protein Transport , Rats , Tyrosine/metabolism
2.
Biochem Pharmacol ; 95(1): 1-15, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25772737

ABSTRACT

The progression of aggressive cancer occurs via angiogenesis and metastasis makes these processes important targets for the development of anti-cancer agents. However, recent studies have raised the concern that selective inhibition of angiogenesis results in a switch towards increased tumour growth and metastasis. Since Annexin A2 (AnxA2) is involved in both angiogenesis and metastasis, it may serve as an ideal target for the simultaneous inhibition of both processes. Based on the discovery that domains I (D(I)) and IV (D(IV)) of AnxA2 are potent inhibitors of angiogenesis, we designed seven peptides derived from these domains based on AnxA2 crystal structures. The peptides were expressed as fusion peptides to increase their folding and solubility. Light scattering, far-UV circular dichroism and thermal transition analyses were employed to investigate their aggregation tendencies, α-helical propensity and stability, respectively. 2,2,2-trifluoroethanol (50%) increased the α-helical propensities of all peptides, indicating that they may favour a hydrophobic environment, but did not enhance their thermal stability. D(I)-P2 appears to be the most stable and folded peptide in a hydrophilic environment. The secondary structure of D(I)-P2 was confirmed by nuclear magnetic resonance spectra. The effect of the seven AnxA2 peptides on the formation and integrity of capillary-like networks was studied in a co-culture system mimicking many of the angiogenesis-related processes. Notably, D(I)-P2 inhibited significantly network formation in this system, indicating that the folded D(I)-P2 peptide interferes with vascular endothelial growth factor-dependent pro-angiogenic processes. Thus, this peptide has the potential of being developed further as an anti-angiogenic drug.


Subject(s)
Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/genetics , Annexin A2/chemistry , Annexin A2/genetics , Hydrophobic and Hydrophilic Interactions , Amino Acid Sequence , Animals , Cattle , Coculture Techniques , Molecular Sequence Data , Protein Structure, Secondary , Water/chemistry , X-Ray Diffraction
3.
PLoS One ; 8(3): e60281, 2013.
Article in English | MEDLINE | ID: mdl-23555942

ABSTRACT

Annexin A2 (AnxA2) is a widely expressed multifunctional protein found in different cellular compartments. In spite of lacking a hydrophobic signal peptide, AnxA2 is found at the cell surface of endothelial cells, indicative of a role in angiogenesis. Increased extracellular levels of AnxA2 in tumours correlate with neoangiogenesis, metastasis and poor prognosis. We hypothesised that extracellular AnxA2 may contribute to angiogenesis by affecting endothelial cell-cell interactions and motility. To address this question, we studied the effect of heterotetrameric and monomeric forms of AnxA2, as well as its two soluble domains on the formation and maintenance of capillary-like structures by using an in vitro co-culture system consisting of endothelial and smooth muscle cells. In particular, addition of purified domains I and IV of AnxA2 potently inhibited the vascular endothelial growth factor (VEGF)-dependent formation of the capillary-like networks in a dose-dependent manner. In addition, these AnxA2 domains disrupted endothelial cell-cell contacts in preformed capillary-like networks, resulting in the internalisation of vascular endothelial (VE)-cadherin and the formation of VE-cadherin-containing filopodia-like structures between the endothelial cells, suggesting increased cell motility. Addition of monoclonal AnxA2 antibodies, in particular against Tyr23 phosphorylated AnxA2, also strongly inhibited network formation in the co-culture system. These results suggest that extracellular AnxA2, most likely in its Tyr phosphorylated form, plays a pivotal role in angiogenesis. The exogenously added AnxA2 domains most likely mediate their effects by competing with endogenous AnxA2 for extracellular factors necessary for the initiation and maintenance of angiogenesis, such as those involved in the formation/integrity of cell-cell contacts.


Subject(s)
Annexin A2/metabolism , Neovascularization, Physiologic/drug effects , Animals , Annexin A2/pharmacology , Cattle , Cells, Cultured , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Microscopy, Confocal , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , S100 Proteins/metabolism
4.
Curr Protein Pept Sci ; 13(4): 401-12, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22708494

ABSTRACT

Increasing evidence points to the participation of the multifunctional protein Annexin A2 (AnxA2) in mRNA localisation as well as the translation of certain mRNAs on cytoskeleton-bound polysomes, and thereby in the regulation of the biosynthesis of specific proteins, such as c-Myc and AnxA2 itself, which are linked to cellular transformation. AnxA2 is most likely activated by signalling pathways, which result in its post-translational modifications and modulate its binding to various ligands, including specific mRNAs. Positive and polar residues in helices C-D in domain IV of AnxA2 bind to cis-acting elements in the 3'-UTRs of its cognate, c-myc, collagen prolyl 4-hydroxylase-α(I) and N-methyl-D-aspartate R1 mRNAs, thus contributing to post-transcriptional regulation of the expression of specific genes. The cis-acting elements appear to constitute a higher order structure, frequently containing the consensus sequence 5'-AA(C/G)(A/U)G; however, non-canonical AnxA2 binding sites may also be involved. In the case of c-myc mRNA, the association with AnxA2 appears to regulate its localisation and translation. In addition, the binding of AnxA2 to a pseudoknot structure present in infectious bronchitis viral RNA results in reduced efficiency of -1 ribosomal frameshifting, indicating its recruitment as a host protein during viral infection. Finally, the association of AnxA2 with endosomes and exosomes suggests a role in co-ordinated transport of mRNA and vesicles, i.e. processes that respond to extracellular signals and are expected to employ multifunctional proteins.


Subject(s)
Annexin A2/metabolism , RNA Processing, Post-Transcriptional/genetics , Amino Acid Sequence , Animals , Annexin A2/biosynthesis , Annexin A2/chemistry , Annexin A2/genetics , Base Sequence , Humans , Molecular Sequence Data , Protein Biosynthesis/genetics , RNA Transport/genetics , Regulatory Sequences, Ribonucleic Acid/genetics , Ribonucleoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...