Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Type of study
Publication year range
1.
Foods ; 12(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38137279

ABSTRACT

In wholemeal bread production, scalding and fermentation contribute to the improvement of the structural characteristics of the dough and bread. The influence of fermented scald on rye and barley dough and bread structure formation was specified in this study. The microstructural analysis performed using a scanning electron microscope revealed the separation of phases during the fermentation of scalds. According to the storage G' and loss G″ moduli, both scalds exhibited elastic character over viscous. The fermentation of barley scald increased both moduli and complex viscosity, while no substantial changes were observed in the fermented rye scald. The addition of fermented scald containing partially hydrolyzed starch and a fraction of water-soluble compounds contributed positively to the formation of a well-organized structure of dough fermented for 4 h. Fermentation substantially reduced the dough's complex viscosity and moduli values, confirming the partial structure alteration leading to the viscous portion increase. The dough with fermented scald showed a significantly lower loss factor than the dough without fermented scald, indicating enhanced mechanical process ability. The most substantial weakening of the structure was observed for dough without scald. The addition of rye scald to the rye dough promoted the formation of fewer pores with relatively smaller specific volumes.

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37999323

ABSTRACT

Considering the documented health benefits of bacterial exopolysaccharides (EPSs), specifically of bacterial levan (BL), including its intrinsic antimicrobial activity against certain pathogenic species, the current study concentrated on the development of active pharmaceutical ingredients (APIs) in the form of colloid systems (CoSs) containing silver nanoparticles (AgNPs) employing in-house biosynthesized BL as a reducing and capping agent. The established protocol of fermentation conditions implicating two species of lactic acid bacteria (LAB), i.e., Streptococcus salivarius K12 and Leuconostoc mesenteroides DSM 20343, ensured a yield of up to 25.7 and 13.7 g L-1 of BL within 72 h, respectively. An analytical approach accomplished by Fourier-transform infrared (FT-IR) spectroscopy allowed for the verification of structural features attributed to biosynthesized BL. Furthermore, scanning electron microscopy (SEM) revealed the crystalline morphology of biosynthesized BL with a smooth and glossy surface and highly porous structure. Molecular weight (Mw) estimated by multi-detector size-exclusion chromatography (SEC) indicated that BL biosynthesized using S. salivarius K12 has an impressively high Mw, corresponding to 15.435 × 104 kilodaltons (kDa). In turn, BL isolated from L. mesenteroides DSM 20343 was found to have an Mw of only 26.6 kDa. Polydispersity index estimation (PD = Mw/Mn) of produced BL displayed a monodispersed molecule isolated from S. salivarius K12, corresponding to 1.08, while this was 2.17 for L. mesenteroides DSM 20343 isolate. The presence of fructose as the main backbone and, to a lesser extent, glucose and galactose as side chain molecules in EPS hydrolysates was supported by HPLC-RID detection. In producing CoS-BL@AgNPs within green biosynthesis, the presence of nanostructured objects with a size distribution from 12.67 ± 5.56 nm to 46.97 ± 20.23 was confirmed by SEM and energy-dispersive X-ray spectroscopy (EDX). The prominent inhibitory potency of elaborated CoS-BL@AgNPs against both reference test cultures, i.e., Pseudomonas aeruginosa, Escherichia coli, Enterobacter aerogenes, and Staphylococcus aureus and those of clinical origin with multi-drug resistance (MDR), was confirmed by disc and well diffusion tests and supported by the values of the minimum inhibitory and bactericidal concentrations. CoS-BL@AgNPs can be treated as APIs suitable for designing new antimicrobial agents and modifying therapies in controlling MDR pathogens.

3.
Animals (Basel) ; 13(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36899672

ABSTRACT

Dairy processing is one of the most polluting sectors of the food industry as it causes water pollution. Given considerable whey quantities obtained via traditional cheese and curd production methods, manufacturers worldwide are encountering challenges for its rational use. However, with the advancement in biotechnology, the sustainability of whey management can be fostered by applying microbial cultures for the bioconversion of whey components such as lactose to functional molecules. The present work was undertaken to demonstrate the potential utilization of whey for producing a fraction rich in lactobionic acid (Lba), which was further used in the dietary treatment of lactating dairy cows. The analysis utilizing high-performance liquid chromatography with refractive index (HPLC-RID) detection confirmed the abundance of Lba in biotechnologically processed whey, corresponding to 11.3 g L-1. The basic diet of two dairy cow groups involving nine animals, Holstein Black and White or Red breeds in each, was supplemented either with 1.0 kg sugar beet molasses (Group A) or 5.0 kg of the liquid fraction containing 56.5 g Lba (Group B). Overall, the use of Lba in the diet of dairy cows during the lactation period equal to molasses affected cows' performances and quality traits, especially fat composition. The observed values of urea content revealed that animals of Group B and, to a lesser extent, Group A received a sufficient amount of proteins, as the amount of urea in the milk decreased by 21.7% and 35.1%, respectively. After six months of the feeding trial, a significantly higher concentration of essential amino acids (AAs), i.e., isoleucine and valine, was observed in Group B. The percentage increase corresponded to 5.8% and 3.3%, respectively. A similar trend of increase was found for branched-chain AAs, indicating an increase of 2.4% compared with the initial value. Overall, the content of fatty acids (FAs) in milk samples was affected by feeding. Without reference to the decrease in individual FAs, the higher values of monounsaturated FAs (MUFAs) were achieved via the supplementation of lactating cows' diets with molasses. In contrast, the dietary inclusion of Lba in the diet promoted an increase in saturated FA (SFA) and polyunsaturated FA (PUFA) content in the milk after six months of the feeding trial.

4.
Foods ; 13(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38201127

ABSTRACT

Despite the health-promoting benefits, the consumption of lentils in East Europe is low, attracting researchers' interest in solving the problem. The aim of this study was to develop an alternative to animal proteins for nutrient-dense plant-based quick meals using roasted lentils as the primary raw material, performing sensory analysis, and evaluating the content of amino acids, minerals, and vitamins. The consumption of legumes in Latvia is also low, even though most respondents associate the use of legumes with a healthy choice. Roasted lentil quick meals can deliver 15.6% and 26.2% of the reference intake for protein. Furthermore, one-third of the amino acids (AAs) are essential AAs. AA values in prepared quick meals make them promising alternatives to meat products. One portion of ready-roasted lentils with Bolognese sauce provided above 15% of the daily reference intake of thiamin and vitamin B9. One portion of a ready-quick meal of tomato soup with roasted lentils and roasted lentils with Bolognese sauce provided 20.3% and 25.6% of iron, according to daily reference intake. Further studies on the bioavailability of quick meals must be conducted to claim they can replace meat nutritionally.

5.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431804

ABSTRACT

Silver nanoparticles (AgNPs) biosynthesized using aqueous medical plant extracts as reducing and capping agents show multiple applicability for bacterial problems. The aim of this study was to expand the boundaries on AgNPs using a novel, low-toxicity, and cost-effective alternative and green approach to the biosynthesis of metallic NPs using Calendula officinalis (Calendula) and Hyssopus officinalis (Hyssopus) aqueous extracts. The formation of AgNPs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) techniques. The effectiveness of biosynthesized AgNPs in quenching free radicals and inhibiting the growth of Gram-positive and Gram-negative microorganisms was supported by in vitro antioxidant activity assay methods and using the Kirby-Bauer disk diffusion susceptibility test, respectively. The elucidated antimicrobial and antioxidative activities of medical plant extracts were compared with data from the engineered biosynthetic AgNPs. The antimicrobial effect of engineered AgNPs against selected test cultures was found to be substantially stronger than for plant extracts used for their synthesis. The analysis of AgNPs by TEM revealed the presence of spherical-shaped nano-objects. The size distribution of AgNPs was found to be plant-type-dependent. The smaller AgNPs were obtained with Hyssopus extract (with a size range of 16.8 ± 5.8 nm compared to 35.7 ± 4.8 nm from Calendula AgNPs). The AgNPs' presumably inherited biological functions of Hyssopus and Calendula medical plants can provide a platform to combat pathogenic bacteria in the era of multi-drug resistance.


Subject(s)
Calendula , Metal Nanoparticles , Antioxidants/pharmacology , Antioxidants/chemistry , Silver/chemistry , Hyssopus Plant , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Bacteria
6.
Animals (Basel) ; 12(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36359114

ABSTRACT

This study aimed to determine the ability of high-density polyethylene, polyethylene terephthalate, Tetra Rex® Bio-based packaging, and Doypack (stand-up pouches) packaging to maintain the nutritional quality and safety of liquid whole egg products for 35 days of refrigerated storage. High-grade hen eggs were used for the preparation of liquid whole egg products (LWEPs). The conformity of eggs quality to grade A was supported by the initial screening of the raw materials' physical-chemical attributes, which remained unchanged during the 25 days of storage. The obtained results indicated that the content of fatty acids in LWEPs was affected by both storage time and packaging material. However, the better preservation of monounsaturated fatty acids was achieved by polyethylene terephthalate, followed by high-density polyethylene packaging. Meanwhile, a statistically significant advantage of polyethylene terephthalate over other packaging materials was also confirmed regarding the maintenance of polyunsaturated fatty acids during 35 days of LWEPs storage. Relative fluctuations in the number of fatty acids in Tetra Rex® Bio-based and Doypack-stored LWEPs revealed their disadvantages manifested by exfoliation of composite layers, which perhaps was the main cause of extensive moisture loss. Overall, due to superior barrier properties, polyethylene terephthalate packaging demonstrated better preservation of amino acids. Only as much as a 2.1% decrease was observed between the initial value and the 35th day of LWEP storage. From a microbiological standpoint, all materials demonstrated the ability to ensure the microbiological safety of products during 35 days of storage, as the maximum allowed limit of 105 CFU g-1 was not exceeded.

7.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080093

ABSTRACT

The present work was undertaken to elucidate the potential contribution of biosynthetically produced ferulic acid (FA) via enzymatic hydrolysis (EH) of rye bran (RB) to the formation of silver nanoparticles (AgNPs) during green synthesis. An analytical approach accomplished by multiple reaction monitoring (MRM) using triple quadrupole mass selective detection (HPLC-ESI-TQ-MS/MS) of the obtained hydrolysate revealed a relative abundance of two isomeric forms of FA, i.e., trans-FA (t-FA) and trans-iso-FA (t-iso-FA). Further analysis utilizing high-performance liquid chromatography with refractive index (HPLC-RID) detection confirmed the effectiveness of RB EH, indicating the presence of cellulose and hemicellulose degradation products in the hydrolysate, i.e., xylose, arabinose, and glucose. The purification process by solid-phase extraction with styrene-divinylbenzene-based reversed-phase sorbent ensured up to 116.02 and 126.21 mg g-1 of t-FA and t-iso-FA in the final eluate fraction, respectively. In the green synthesis of AgNPs using synthetic t-FA, the formation of NPs with an average size of 56.8 nm was confirmed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The inclusion of polyvinylpyrrolidone (PVP-40) in the composition of NPs during synthesis favorably affected the morphological features, i.e., the size and shape of AgNPs, in which as big as 22.4 nm NPs were engineered. Meanwhile, nearly homogeneous round-shaped AgNPs with an average size of 16.5 nm were engineered using biosynthetically produced a mixture of t-FA and t-iso-FA and PVP-40 as a capping agent. The antimicrobial activity of AgNPs against Gram-positive and Gram-negative bacteria, including Pseudomonas aeruginosa, E. coli, Enterococcus faecalis, Bacillus subtilis, and Staphylococcus aureus was confirmed by the disk diffusion method and additionally supported by values of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Given the need to reduce problems of environmental pollution with cereal processing by-products, this study demonstrated a technological solution of RB rational use in the sustainable production of AgNPs during green synthesis. The AgNPs can be considered as active pharmaceutical ingredients (APIs) to be used for developing new antimicrobial agents and modifying therapies in treating multi-drug resistant (MDR) pathogens.

8.
Foods ; 11(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36140872

ABSTRACT

The profile of amino acids and mono- and disaccharides in conventional polyfloral honey originated from Latvia and Tajikistan and less found in nature bumblebee honey from Russia was investigated. The analysis of free amino acids (FAAs) accomplished by multiple reaction monitoring (MRM) using triple quadrupole mass selective detection (HPLC-ESI-TQ-MS/MS) revealed the presence of 17 FAAs. The concentration of FAAs varied in the range of 0.02-44.41 mg 100 g-1 FW. Proline was the main representative of FAAs, contributing to the total amount of FAAs from 41.7% to 80.52%. The highest concentration of proline was found in bumblebee and buckwheat honey, corresponding to 44.41 and 41.02 mg 100 g-1, respectively. The concentration of essential amino acids (AAs), i.e., leucine, and isoleucine was found to be the highest in buckwheat honey contributing up to 12.5% to the total amount of FAAs. While, the concentration of branched-chain AAs fluctuated within the range of 1.08-31.13 mg 100 g-1 FW, with buckwheat honey having the highest content and polyfloral honey the lowest, respectively. The results of this study confirmed the abundance of FAAs both in honeybee and bumblebee honey. However, the concentration of individual FAAs, such as proline, aspartic acid, leucine, and isoleucine in bumblebee honey was many folds higher than observed in honeybee polyfloral honey.

9.
Biology (Basel) ; 11(5)2022 May 08.
Article in English | MEDLINE | ID: mdl-35625449

ABSTRACT

The main intention of the present work was to investigate the ability of cellulose-degrading enzymes (C-DE) to release fatty acids (FAs) from complex matrices of cereal by-products during enzymatic hydrolysis (EH). For this purpose, three types of cereal bran (CB), i.e., wheat, rye, and oat, were used as lignocellulose substrates for three commercially available hydrolytic enzymes, i.e., Viscozyme L, Viscoferm, and Celluclast 1.5 L. The yield and composition of FAs after EH were assessed and compared with those obtained after either conventional Soxhlet extraction or after alkaline-assisted hydrolysis (A-AH) with 10% KOH in 80% MeOH and subsequent liquid-liquid extraction. The experimental results demonstrated that up to 6.3% and 43.7% higher total FA yield can be achieved by EH of rye bran using Celluclast 1.5 L than by A-AH and Soxhlet extraction, respectively. However, the application of Viscoferm for EH of wheat bran ensured up to 7.7% and 13.4% higher total FA yield than A-AH and Soxhlet extraction, respectively. The concentration of essential linolenic acid (C18:3) in lipids extracted after EH of rye bran with Celluclast 1.5 L was up to 24.4% and 57.0% higher than in lipids recovered by A-AH and Soxhlet extraction, respectively. In turn, the highest content of linolenic acid in wheat bran lipids was observed after EH with Viscoferm and Viscozyme L, ensuring 17.0% and 13.6% higher yield than after A-AH, respectively. SEM analysis confirmed substantial degradation of the CB matrix promoted by the ability of C-DE to act specifically on glycosidic bonds in cellulose and on xylosidic bonds in arabinoxylans, arabinans, and other arabinose-containing hemicelluloses. Structural alterations in cell integrity greatly contributed to the release of bound FAs and their better transfer into the extraction solvent. It has been shown that the proposed process of EH can be used for the efficient release of FAs from the CB matrix more sustainably and with a safer profile, thereby conveying greener production of FAs for certain purposes.

10.
Antibiotics (Basel) ; 11(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35453213

ABSTRACT

The purpose of the present investigation was to compare the antibacterial activity of six commercial and lab-scale extracted essential oils (EOs) alone or in combination with caprylic acid (CA) and sodium chloride (NaCl) against faecal Escherichia coli with and without extended-spectrum beta-lactamase (ESBL) encoding genes, and of isolates classified as multidrug-resistant (MDR). Gas chromatography−mass spectrometry (GC−MS) was used for the analysis of chemical composition of EOs, while the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were carried out to elucidate the antibacterial activity of non-supplemented and supplemented EOs against different resistance levels of E. coli strains. The main compounds in commercial EOs were aromatic monoterpenoids (30−56%) and p-cymene (8−35%), while the main compounds in the lab-scale EOs were aromatic monoterpenoids (12−37%) and γ-terpinene (18−22%). Commercial EOs exhibited superior inhibitory activity of E. coli in comparison to lab-scale produced EOs. Antibacterial activity of EOs was significantly enhanced by enrichment of the EOs with NaCl (p < 0.001) or CA (p = 0.012). Most of the non-supplemented EOs exhibited lower activity against MDR and ESBL producing E. coli. In contrast, EOs supplemented with CA and especially NaCl was equally effective against ESBL and non-ESBL as well as MDR and non-MDR E. coli. It was found that supplementation of EOs with NaCl could enhance the antibacterial activity towards ESBL and MDR E. coli isolates. However, additional studies are needed to clarify the potential risks of developing resistance.

11.
Foods ; 10(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34945607

ABSTRACT

Biorefining by enzymatic hydrolysis (EH) of lignocellulosic waste material due to low costs and affordability has received enormous interest amongst scientists as a potential strategy suitable for the production of bioactive ingredients and chemicals. In this study, a sustainable and eco-friendly approach to extracting bound ferulic acid (FA) was demonstrated using single-step EH by a mixture of lignocellulose-degrading enzymes. For comparative purposes of the efficiency of EH, an online extraction and analysis technique using supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry (SFE-SFC-MS) was performed. The experimental results demonstrated up to 369.3 mg 100 g-1 FA release from rye bran after 48 h EH with Viscozyme L. The EH of wheat and oat bran with Viscoferm for 48 h resulted in 255.1 and 33.5 mg 100 g-1 of FA, respectively. The release of FA from bran matrix using supercritical fluid extraction with carbon dioxide and ethanol as a co-solvent (SFE-CO2-EtOH) delivered up to 464.3 mg 100 g-1 of FA, though the extractability varied depending on the parameters used. The 10-fold and 30-fold scale-up experiments confirmed the applicability of EH as a bioprocessing method valid for the industrial scale. The highest yield of FA in both scale-up experiments was obtained from rye bran after 48 h of EH with Viscozyme L. In purified extracts, the absence of xylose, arabinose, and glucose as the final degradation products of lignocellulose was proven by high-performance liquid chromatography with refractive index detection (HPLC-RID). Up to 94.0% purity of FA was achieved by solid-phase extraction (SPE) using the polymeric reversed-phase Strata X column and 50% EtOH as the eluent.

12.
Foods ; 10(4)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916453

ABSTRACT

Historically Triticum aestívum L. and Secale cereále L. are widely used in the production of bakery products. From the total volume of grain cultivated, roughly 85% is used for the manufacturing of flour, while the remaining part is discarded or utilized rather inefficiently. The limited value attached to bran is associated with their structural complexity, i.e., the presence of cellulose, hemicellulose, and lignin, which makes this material suitable mostly as a feed supplement, while in food production its use presents a challenge. To valorize these materials to food and pharmaceutical applications, additional pre-treatment is required. In the present study, an effective, sustainable, and eco-friendly approach to ferulic acid (FA) production was demonstrated through the biorefining process accomplished by non-starch polysaccharides degrading enzymes. Up to 11.3 and 8.6 g kg-1 of FA was released from rye and wheat bran upon 24 h enzymatic hydrolysis with multi-enzyme complex Viscozyme® L, respectively.

13.
Compr Rev Food Sci Food Saf ; 19(6): 4008-4030, 2020 11.
Article in English | MEDLINE | ID: mdl-33337029

ABSTRACT

According to recent reports, the global market for melatonin is worth 700 million USD in 2018 and would reach 2,790 million USD by 2025, growing at a CAGR of 18.9% during 2019 to 2025. Having regard to the prevalence of sleep and circadian rhythm disorders and a clear tendency to increase the demand for melatonin, and the current lack of alternative green and cost-efficient technologies of its synthesis, the supply of this remedy will not be enough to guarantee melatonin supply and affordability on a global scale. The emergence of naturally occurring melatonin and its isomers in fermented foods has opened an exciting new research area; there are still, however, some obscure points in the efficient microbiological biosynthesis of melatonin. This review summarizes the research progress and recent evidence related to melatonin and its isomers in various foodstuffs. Additionally, one possible way to synthesize melatonin is also discussed. The evidence pointed out that the presence of melatonin and its isomers is not exclusive for grapes and grape-derived products, because it can be also found in sweet and sour cherries. However, different species of both Saccharomyces and non-Saccharomyces yeasts could be used to obtain melatonin and melatonin isomers in the process of alcoholic fermentation biotechnologically. The availability of L-tryptophan has been a key factor in determining the concentration of indolic compounds produced, and the utilization of probiotic lactic acid bacteria could help in the formation of melatonin isomers during malolactic fermentation. These approaches are environmentally friendly alternatives with a safer profile than conventional ones and could represent the future for sustainable industrial-scale melatonin production.


Subject(s)
Fermented Foods/analysis , Fruit/chemistry , Melatonin/biosynthesis , Fermentation , Lactobacillales/metabolism , Melatonin/chemistry , Melatonin/pharmacology , Tryptophan , Yeasts/metabolism
14.
Meat Sci ; 162: 108033, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31862489

ABSTRACT

A meat model system was used for screening lipid oxidation inhibiting capacity of diverse horticultural plant materials. In the model, heme-containing sarcoplasmic proteins from the meat water-phase were homogenized with linoleic acid and thiobarbituric reactive substances (TBARS) were measured. 23 Plant materials were investigated at three high (50, 100, and 200 ppm) concentrations and five plant extracts were tested at three low (5, 10, and 20 ppm) concentrations over time. In the high concentration sets, summer savory freeze-dried powder, beetroot leaves extracted with 50% ethanol, and an olive polyphenol powder extracted from wastewater, inhibited oxidation the most effectively. After two weeks and at 200 ppm concentration, oxidation was reduced to 17.2%, 16.6% and 13.5% of the blank sample with no added antioxidants respectively. In the low concentration set, spray dried rhubarb juice inhibited oxidation the most after two weeks at 5 ppm where oxidation was reduced to 68.3% of the blank sample with no added antioxidants.


Subject(s)
Lipid Peroxidation , Meat Products/analysis , Plant Extracts/pharmacology , Animals , Food Preservation , Plant Leaves , Powders , Swine , Thiobarbituric Acid Reactive Substances/analysis
15.
Food Sci Technol Int ; 25(3): 252-267, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30509132

ABSTRACT

The aim of this study was to assess the effect of O3 treatment on the quality of different cultivars of apples ( Malus domestica Borkh.). Apples were stored for six months at different concentrations of ozone. During the research, minor differences between ozone-treated and control fruits were found in terms of cell integrity and epicuticular wax structure. Ozone application for apple treatment could accelerate the natural ageing of the waxes found on the surface of apples, thereby reducing the thickness of the waxes. The rate of degradation for the epicuticular wax was found to be cultivar dependent. After six months of storage, the ozonation process prevented the decay of 'Iedzenu', 'Auksis' and 'Belorusskoje Malinovoje' apple cultivars, but it accelerated damage in the 'Gita' apple cultivar. A positive impact of ozone during long-term storage was found regarding flesh firmness of 'Iedzenu' apple cultivar samples subjected to O3 exposure at concentrations of 0.8 ppm and 3.0 ppm. In other cultivars of apples, significant differences between ozonation and cold storage (control) were not found. In general, ozone treatment has a potential to be applied in order to maintain the sensory quality and biologically active compound level in apples during six-month storage; however, the degree of effectiveness depends both on the cultivar and on the concentration of ozone.


Subject(s)
Food Preservation/methods , Fruit/drug effects , Malus , Ozone/pharmacology , Consumer Behavior , Female , Food Quality , Food Storage/methods , Fruit/chemistry , Fruit/ultrastructure , Humans , Male , Sensation/drug effects , Species Specificity
16.
Plants (Basel) ; 7(4)2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30352980

ABSTRACT

The amplified production of fruit as well as burgeoning demand for plant-made food products have resulted in a sharp increase of waste. Currently, millions of tons of by-products are either being discarded or utilized rather ineffectively. However, these by-products may be processed and further incorporated as functional ingredients in making high-value food products with many physiological and biochemical effects. The chemical analysis of pomace oils using gas chromatography-mass spectrometry (GC/MS) and reversed-phase-liquid chromatography coupled with fluorescence detector (RP-HPLC/FLD) systems led to the identification and quantification of 56 individual lipophilic compounds including unsaturated, polyunsaturated and saturated fatty acids, as well as phytosterols and four homologs of tocopherol. The oils recovered from by-products of Malus spp. (particularly cv. "Ola") are rich in fatty acids such as linolenic (57.8%), α-linolenic (54.3%), and oleic (25.5%). The concentration of total tocopherols varied among the Malus species and dessert apples investigated, representing the range of 16.8⁻30.9 mg mL-1. The highest content of total tocopherols was found in M. Bernu prieks, followed by M. cv. "Ola", and M. × Soulardii pomace oils. A significantly higher amount of δ-tocopherol was established in the oil of M. Bernu prieks, indicating that this species could be utilized as a natural and cheap source of bioactive molecules. ß-Sitosterol was the prevalent compound determined in all tested pomace oils with a percentage distribution of 10.3⁻94.5%. The main triterpene identified in the oils was lupeol, which varied in the range of 0.1⁻66.3%. A targeted utilization of apple pomace would facilitate management of tons of by-products and benefit the environment and industry.

17.
Nat Prod Res ; 31(21): 2549-2553, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28412858

ABSTRACT

The content of tocochromanols and carotenoids in kernels recovered from fruit pits of six sour cherry (Prunus cerasus L.) cultivars was studied. The highest concentration was noted for γ-T (23.50-52.76 mg/100 g dry weight basis (dw)). Considerably, lower amounts compared to γ-T were detected for α-T, δ-T and α-T3 (5.74-13.33, 2.74-4.54 and 0.30-1.16 mg/100 g dw, respectively). The ß-T and γ-T3 were quantified only in minor levels. The total amount of tocochromanols was in the range 41.69-63.48 mg/100 g dw. The levels of total carotenoids ranged between 0.17 and 0.39 mg/100 dw. The concentration of tocochromanols and carotenoids in kernels of different sour cherries is cultivar-dependent. A significant correlation (r = 0.985, p < 0.001) has been observed between the total content of tocochromanols in kernels and scavenging of free radicals DPPH by native lipophilic antioxidants in the by-products of sour cherry.


Subject(s)
Antioxidants/analysis , Carotenoids/analysis , Prunus avium/chemistry , Tocopherols/analysis , Tocotrienols/analysis , Antioxidants/chemistry , Fruit/chemistry , Plant Extracts/chemistry
18.
J Chromatogr Sci ; 54(6): 977-84, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26966272

ABSTRACT

A new reliable analytical method based on ultra-high-performance liquid chromatography coupled with hybrid quadrupole-Orbitrap mass spectrometry was developed for the analysis of melatonin (MEL) in food products. In-house validation was performed using deuterated melatonin (MEL-d4) as an internal standard to ensure method selectivity and accuracy and to evaluate the efficiency of a robust ethyl acetate extraction technique used for sample preparation. The analysis of 18 tart cherry varieties and 28 tomato varieties was performed at optimized conditions. The method was linear (R(2)> 0.99) over the concentration range of 5-200 pg/g. A very low limit of quantification (10 pg/g) was provided for both analyzed matrices. The determined average recoveries (102 and 110%) and the values of intraday repeatability (6.30 and 10.9%) for cherry and tomato matrices, respectively, indicated a good accuracy and precision. The elaborated procedure proved the absence of MEL in any of tart cherries (<10 pg/g), whereas the concentration levels in tomatoes were found to be in the range of <10-149 pg/g, where the highest concentrations were determined in "Cherry," "Cherry Red" and "Rome" tomatoes grown in the Netherlands.


Subject(s)
Chromatography, High Pressure Liquid , Food Analysis/methods , Fruit/chemistry , Melatonin/analysis , Tandem Mass Spectrometry , Limit of Detection , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...