Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 206: 120191, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31514840

ABSTRACT

An analytical methodology involving Particle Induced X-ray Emission (PIXE) and Rutherford Backscattering Spectroscopy (RBS) was implemented to respectively characterize the composition and the thickness of silver leaves on gilt leather decors. These objects, ancestors of our wallpapers, are nowadays still difficult to date and their provenance is generally determined from stylistic studies. The initial aim of this study was to identify markers that could be correlated with the object provenance to help distinguishing the different gilt leathers workshops in Europe. The analytical methodology was validated on modern samples and applied to a corpus of 58 ancient gilt leathers from four countries. This study provided an assessment of the sensitivity of the ion beam techniques used, and highlighted the complexity of such analyses on thin silver leaves due to the different factors affecting them, and the composite nature of the object. Thus, the thicknesses calculated from the RBS analyses presented a great variability that seems to be related to the leaf characteristics, the manufacturing process and/or the life of the decor. Nevertheless, observations suggest that silver leaves coming from the Netherlands are thicker than the ones from Spain, Italy or France. Concerning the elemental composition, the results discarded previous hypotheses and the focus was made on gold and mercury trace elements, thus it was shown that leaves in Italian decors seem to have generally a low content of these two elements. Despite the large number of decor analyzed, the corpus should be expanded over to confirm the hypotheses raised by this research. Nevertheless the results gained from this work bring new light on the factors affecting thin metal leaves in general, which will be beneficial to all fields dealing with their analysis.

2.
Article in English | MEDLINE | ID: mdl-23772661

ABSTRACT

We review methods and recent studies in which macroscopic to (sub)microscopic X-ray beams were used for nondestructive analysis and characterization of pigments, paint microsamples, and/or entire paintings. We discuss the use of portable laboratory- and synchrotron-based instrumentation and describe several variants of X-ray fluorescence (XRF) analysis used for elemental analysis and imaging and combined with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Macroscopic and microscopic (µ-)XRF variants of this method are suitable for visualizing the elemental distribution of key elements in paint multilayers. Technical innovations such as multielement, large-area XRF detectors have enabled such developments. The use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that take place during natural pigment alteration processes. However, synchrotron-based combinations of µ-XRF, µ-XAS, and µ-XRD are suitable for such studies.

3.
Anal Chem ; 85(2): 851-9, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23050489

ABSTRACT

The painter, Vincent van Gogh, and some of his contemporaries frequently made use of the pigment chrome yellow that is known to show a tendency toward darkening. This pigment may correspond to various chemical compounds such as PbCrO(4) and PbCr(1-x)S(x)O(4), that may each be present in various crystallographic forms with different tendencies toward degradation. Investigations by X-ray diffraction (XRD), mid-Fourier Transform infrared (FTIR), and Raman instruments (benchtop and portable) and synchrotron radiation-based micro-XRD and X-ray absorption near edge structure spectroscopy performed on oil-paint models, prepared with in-house synthesized PbCrO(4) and PbCr(1-x)S(x)O(4), permitted us to characterize the spectroscopic features of the various forms. On the basis of these results, an extended study has been carried out on historic paint tubes and on embedded paint microsamples taken from yellow-orange/pale yellow areas of 12 Van Gogh paintings, demonstrating that Van Gogh effectively made use of different chrome yellow types. This conclusion was also confirmed by in situ mid-FTIR investigations on Van Gogh's Portrait of Gauguin (Van Gogh Museum, Amsterdam).


Subject(s)
Antimony/analysis , Chromates/analysis , Chromium Compounds/analysis , Lead/analysis , Paintings , Titanium/analysis , Chromium Compounds/chemical synthesis , Crystallization , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , X-Ray Diffraction
4.
Anal Chem ; 85(2): 860-7, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23051631

ABSTRACT

Previous investigations about the darkening of chrome yellow pigments revealed that this form of alteration is attributable to a reduction of the original Cr(VI) to Cr(III), and that the presence of sulfur-containing compounds, most often sulfates, plays a key role during this process. We recently demonstrated that different crystal forms of chrome yellow pigments (PbCrO(4) and PbCr(1-x)S(x)O(4)) are present in paintings by Vincent van Gogh. In the present work, we show how both the chemical composition and the crystalline structure of lead chromate-based pigments influence their stability. For this purpose, oil model samples made with in-house synthesized powders of PbCrO(4) and PbCr(1-x)S(x)O(4) were artificially aged and characterized. We observed a profound darkening only for those paint models made with PbCr(1-x)S(x)O(4), rich in SO(4)(2-) (x ≥ 0.4), and orthorhombic phases (>30 wt %). Cr and S K-edge micro X-ray absorption near edge structure investigations revealed in an unequivocal manner the formation of up to about 60% of Cr(III)-species in the outer layer of the most altered samples; conversely, independent of the paint models' chemical composition, no change in the S-oxidation state was observed. Analyses employing UV-visible diffuse reflectance and Fourier transform infrared spectroscopy were performed on unaged and aged model samples in order to obtain additional information on the physicochemical changes induced by the aging treatment.


Subject(s)
Chromates/chemistry , Lead/chemistry , Paintings , Models, Molecular , Particle Size , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Surface Properties , Time Factors , X-Ray Diffraction
5.
Anal Chem ; 83(4): 1214-23, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21314201

ABSTRACT

On several paintings by artists of the end of the 19th century and the beginning of the 20th Century a darkening of the original yellow areas, painted with the chrome yellow pigment (PbCrO(4), PbCrO(4)·xPbSO(4), or PbCrO(4)·xPbO) is observed. The most famous of these are the various Sunflowers paintings Vincent van Gogh made during his career. In the first part of this work, we attempt to elucidate the degradation process of chrome yellow by studying artificially aged model samples. In view of the very thin (1-3 µm) alteration layers that are formed, high lateral resolution spectroscopic methods such as microscopic X-ray absorption near edge (µ-XANES), X-ray fluorescence spectrometry (µ-XRF), and electron energy loss spectrometry (EELS) were employed. Some of these use synchrotron radiation (SR). Additionally, microscopic SR X-ray diffraction (SR µ-XRD), µ-Raman, and mid-FTIR spectroscopy were employed to completely characterize the samples. The formation of Cr(III) compounds at the surface of the chrome yellow paint layers is particularly observed in one aged model sample taken from a historic paint tube (ca. 1914). About two-thirds of the chromium that is present at the surface has reduced from the hexavalent to the trivalent state. The EELS and µ-XANES spectra are consistent with the presence of Cr(2)O(3)·2H(2)O (viridian). Moreover, as demonstrated by µ-XANES, the presence of another Cr(III) compound, such as either Cr(2)(SO(4))(3)·H(2)O or (CH(3)CO(2))(7)Cr(3)(OH)(2) [chromium(III) acetate hydroxide], is likely.

6.
Anal Chem ; 83(4): 1224-31, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21314202

ABSTRACT

The darkening of the original yellow areas painted with the chrome yellow pigment (PbCrO(4), PbCrO(4)·xPbSO(4), or PbCrO(4)·xPbO) is a phenomenon widely observed on several paintings by Vincent van Gogh, such as the famous different versions of Sunflowers. During our previous investigations on artificially aged model samples of lead chromate, we established for the first time that darkening of chrome yellow is caused by reduction of PbCrO(4) to Cr(2)O(3)·2H(2)O (viridian green), likely accompanied by the presence of another Cr(III) compound, such as either Cr(2)(SO(4))(3)·H(2)O or (CH(3)CO(2))(7)Cr(3)(OH)(2) [chromium(III) acetate hydroxide]. In the second part of this work, in order to demonstrate that this reduction phenomenon effectively takes place in real paintings, we study original paint samples from two paintings of V. van Gogh. As with the model samples, in view of the thin superficial alteration layers that are present, high lateral resolution spectroscopic methods that make use of synchrotron radiation (SR), such as microscopic X-ray absorption near edge (µ-XANES) and X-ray fluorescence spectrometry (µ-XRF) were employed. Additionally, µ-Raman and mid-FTIR analyses were carried out to completely characterize the samples. On both paint microsamples, the local presence of reduced Cr was demonstrated by means of µ-XANES point measurements. The presence of Cr(III) was revealed in specific areas, in some cases correlated to the presence of Ba(sulfate) and/or to that of aluminum silicate compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...