Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 10(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921399

ABSTRACT

Over the past decade, there have been accumulating reports from researchers, farmers, and field extension personnel on the increasing incidence and spread of onion basal rot in India. Onion basal rot disease is mainly caused by Fusarium spp. This study aimed to validate the information on the active prevalence of F. falciforme and F. acutatum causing Fusarium basal rot (FBR) in Maharashtra. A survey was conducted, and the infected plants/bulbs were collected from fields of 38 locations comprising five districts of Maharashtra, namely, Nashik, Aurangabad, Solapur, Ahmednagar, and Pune, in 2023. This disease was prevalent in high-moisture and high-oil-temperature conditions and the symptoms were observed in most of the fields, with the FBR incidence ranging from 17 to 41%. The available data of basal rot incidence from 1998 to 2022 were analyzed, based on which the prevalence of FBR was 11-50%. Tissue from the infected samples of onion bulbs was used for the isolation. The identification was performed based on colony morphology and microscopic features and confirmed through molecular markers using ITS and Tef-1α gene primers. Of the ten Fusarium isolates collected from selected locations, six species were confirmed as F. acutatum and four as F. falciforme. The pathogenicity tests performed with onion seedlings and bulbs under moist conditions proved that both F. acutatum and F. falciforme independently could cause basal rot disease symptoms but with different degrees of virulence. Koch's postulates were confirmed by reisolating the same pathogens from the infected plants. Thus, the active prevalence of FBR was confirmed in Maharashtra and also, to the best of our knowledge, this is the first report of F. falciforme and F. acutatum causing basal rot of onion independently in Maharashtra, India.

2.
Front Plant Sci ; 10: 256, 2019.
Article in English | MEDLINE | ID: mdl-30906306

ABSTRACT

Apomixis is a method of reproduction to generate clonal seeds and offers tremendous potential to fix heterozygosity and hybrid vigor. The process of apomictic seed development is complex and comprises three distinct components, viz., apomeiosis (leading to formation of unreduced egg cell), parthenogenesis (development of embryo without fertilization) and functional endosperm development. Recently, in many crops, these three components are reported to be uncoupled leading to their partitioning. This review provides insight into the recent status of our understanding surrounding partitioning apomixis components in gametophytic apomictic plants and research avenues that it offers to help understand the biology of apomixis. Possible consequences leading to diversity in seed developmental pathways, resources to understand apomixis, inheritance and identification of candidate gene(s) for partitioned components, as well as contribution towards creation of variability are all discussed. The potential of Panicum maximum, an aposporous crop, is also discussed as a model crop to study partitioning principle and effects. Modifications in cytogenetic status, as well as endosperm imprinting effects arising due to partitioning effects, opens up new opportunities to understand and utilize apomixis components, especially towards synthesizing apomixis in crops.

3.
Data Brief ; 18: 590-593, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29896532

ABSTRACT

Guinea grass (Panicum maximum Jacq), an important fodder crop of humid and sub-humid tropical regions, reproduces through apomixis, a method of clonal propagation through seeds. Lack of knowledge of the genetic and molecular control of this phenomena has hindered the genetic improvement of this crop. The dataset provided here represents the first RNA-Seq based assembly and analysis of florets at pre-meiotic stage from the apomictic and sexual genotypes of guinea grass. The raw sequence files in FASTQ format were deposited in the NCBI SRA database with accession number SRP115883. A total of 24.8 Gb raw sequence data, corresponding to 17,96,65,827 raw reads was obtained by paired end sequencing. We used Trinity for de-novo assembly and identified 57,647 transcripts in sexual and 49,093 transcripts in apomictic type. This transcriptome data will be useful for identification and comparative analysis of genes regulating the mode of reproduction in grasses.

SELECTION OF CITATIONS
SEARCH DETAIL
...