Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10116, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698029

ABSTRACT

Recent advances in semiconductor based electronic devices can be attributed to the technological demands of ever increasing, application specific markets. These rapidly evolving markets for devices such as displays, wireless communication, photovoltaics, medical devices, etc. are demanding electronic devices that are increasingly thinner, smaller, lighter and flexible. High-quality, III-V epitaxial thin-films deposited on single-crystal substrates have yielded extremely high-performance, but are extremely expensive and rigid. Here we demonstrate heteroepitaxial deposition of GaAs thin-films on large-grained, single-crystal-like, biaxially-aligned, flexible, metallic substrates. We use molecular beam epitaxy (MBE) for the controlled growth of high quality GaAs layers on lattice matched Ge capped, flexible metal substrates. The structural, optical, interfacial and electrical characteristics and properties of the heteroepitaxial GaAs layers are analyzed and discussed. The results show that heteroepitaxial GaAs layers with good crystalline and optoelectronic properties can be realized for flexible, III-V based semiconductor devices. III-V materials integrated on large-grained, single-crystal-like, flexible, metallic substrates offer a potential route towards fabrication of large-area, high-performance electronic devices.

2.
PNAS Nexus ; 1(3): pgac098, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36741437

ABSTRACT

Germanium (Ge) films were heteroepitaxially grown on flexible, large-area, single-crystal-like metallic substrates. Multiple, heteroepitaxial, buffer layers of nanoscale dimensions were deposited on the triaxially textured, single-crystal-like, thermo-mechanically processed Ni-W alloy substrates. Ge films were deposited on a CeO2-terminated, heteroepitaxial buffer stack on the metallic substrate using electron beam evaporation. X-ray diffraction θ-2θ scans showed a very strong Ge (400) peak and the full width at half-maximum (FWHM) of the Ge (400) rocking curve was 0.93°. The Ge (111) ϕ-scan showed a FWHM value ∼4°. Based on the X-ray ω-scan, ϕ-scan and (111), (110), and (001) X-ray pole-figures, the Ge film deposited on the flexible, metallic substrate had a cube-on-cube heteroepitaxial relationship with the single-crystal-like metallic substrate. Reflection-high-energy-diffraction (RHEED) patterns from the Ge layer was streaky indicative of a smooth and essentially single-crystal-like Ge film. Cross-section TEM examination revealed a sharp interface between the Ge film and the topmost buffer layer, CeO2, with a low defect density. The CeO2 layer serves as a highly compliant layer that modulates its lattice parameter to attain excellent lattice-matching to the heteroepitaxial Ge layer. Ge films grown on these flexible metal substrates exhibited electron mobilities in the range of 175-250 cm2V-1s-1. Such single-crystal-like semiconductor films on low-cost, flexible, large-area, scalable, single-crystal-like metallic substrates could potentially enable high-performance electronic devices for a range of applications.

3.
J Med Virol ; 93(1): 499-505, 2021 01.
Article in English | MEDLINE | ID: mdl-32633815

ABSTRACT

The initial cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) occurred in Wuhan, China, in December 2019 and swept the world by 23 June 2020 with 8 993 659 active cases, 469 587 deaths across 216 countries, areas or territories. This strongly implies global transmission occurred before the lockdown of China. However, the initial source's transmission routes of SARS-CoV-2 remain obscure and controversial. Research data suggest bat (RaTG13) and pangolin carried CoV were the proximal source of SARS-CoV-2. In this study, we used systematic phylogenetic analysis of Coronavirinae subfamily along with wild type human SARS-CoV, MERS-CoV, and SARS-CoV-2 strains. The key residues of the receptor-binding domain (RBD) and O-linked glycan were compared. SARS-CoV-2 strains were clustered with RaTG13 (97.41% identity), Pangolin-CoV (92.22% identity) and Bat-SL-CoV (80.36% identity), forms a new clade-2 in lineage B of beta-CoV. The alignments of RBD contact residues to ACE2 justified? Those SARS-CoV-2 strains sequences were 100% identical by each other, significantly varied in RaTG13 and pangolin-CoV. SARS-CoV-2 has a polybasic cleavage site with an inserted sequence of PRRA compared to RaTG13 and only PRR to pangolin. Only serine (Ser) in pangolin and both threonine (Thr) and serine (Ser) O-linked glycans were seen in RaTG13, suggesting that a detailed study needed in pangolin (Manis javanica) and bat (Rhinolophus affinis) related CoV.


Subject(s)
Chiroptera/virology , Coronavirus/genetics , Pangolins/virology , Polysaccharides/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Binding Sites , China , Communicable Disease Control , Coronavirus Envelope Proteins/chemistry , Coronavirus Envelope Proteins/genetics , Gene Expression Regulation, Viral , Host Specificity , Humans , Models, Molecular , Phylogeny , Polysaccharides/metabolism , Protein Conformation , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...