Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 11(1): 15429, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326352

ABSTRACT

Evidences are escalating on the diverse neurological-disorders and asymptomatic cardiovascular-diseases associated with COVID-19 pandemic due to the Sanal-flow-choking. Herein, we established the proof of the concept of nanoscale Sanal-flow-choking in real-world fluid-flow systems using a closed-form-analytical-model. This mathematical-model is capable of predicting exactly the 3D-boundary-layer-blockage factor of nanoscale diabatic-fluid-flow systems (flow involves the transfer of heat) at the Sanal-flow-choking condition. As the pressure of the diabatic nanofluid and/or non-continuum-flows rises, average-mean-free-path diminishes and thus, the Knudsen-number lowers heading to a zero-slip wall-boundary condition with the compressible-viscous-flow regime in the nanoscale-tubes leading to Sanal-flow-choking due to the sonic-fluid-throat effect. At the Sanal-flow-choking condition the total-to-static pressure ratio (ie., systolic-to-diastolic pressure ratio) is a unique function of the heat-capacity-ratio of the real-world flows. The innovation of the nanoscale Sanal-flow-choking model is established herein through the entropy relation, as it satisfies all the conservation-laws of nature. The physical insight of the boundary-layer-blockage persuaded nanoscale Sanal-flow-choking in diabatic flows presented in this article sheds light on finding solutions to numerous unresolved scientific problems in physical, chemical and biological sciences carried forward over the centuries because the mathematical-model describing the phenomenon of Sanal-flow-choking is a unique scientific-language of the real-world-fluid flows. The 3D-boundary-layer-blockage factors presented herein for various gases are universal-benchmark-data for performing high-fidelity in silico, in vitro and in vivo experiments in nanotubes.


Subject(s)
Fluid Shifts/physiology , Models, Theoretical , Nanotubes/chemistry , Rheology/methods , Algorithms , Biophysical Phenomena , COVID-19/physiopathology , Cardiovascular Physiological Phenomena , Cardiovascular System/physiopathology , Computational Biology/methods , Humans , Hydrodynamics , Physical Phenomena , SARS-CoV-2/isolation & purification
3.
Glob Chall ; 5(3): 2000076, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33728053

ABSTRACT

The discovery of Sanal flow choking in the cardiovascular-system calls for multidisciplinary and global action to develop innovative treatments and to develop new drugs to negate the risk of asymptomatic-cardiovascular-diseases. Herein, it is shown that when blood-pressure-ratio (BPR) reaches the lower-critical-hemorrhage-index (LCHI) internal-flow-choking and shock wave generation can occur in the cardiovascular-system, with sudden expansion/divergence/vasospasm or bifurcation regions, without prejudice to the percutaneous-coronary-intervention (PCI). Analytical findings reveal that the relatively high and the low blood-viscosity are cardiovascular-risk factors. In vitro studies have shown that nitrogen, oxygen, and carbon dioxide gases are dominant in fresh blood samples of humans/guinea pigs at a temperature range of 98.6-104 F. An in silico study demonstrated the Sanal flow choking phenomenon leading to shock-wave generation and pressure-overshoot in the cardiovascular-system. It has been established that disproportionate blood-thinning treatment increases the risk of the internal-flow-choking due to the enhanced boundary-layer-blockage-factor, resulting from an increase in flow-turbulence level in the cardiovascular-system, caused by an increase in Reynolds number as a consequence of low blood-viscosity. The cardiovascular-risk can be diminished by concurrently lessening the viscosity of biofluid/blood and flow-turbulence by raising the thermal-tolerance-level in terms of blood-heat-capacity-ratio (BHCR) and/or by decreasing the systolic-to-diastolic blood-pressure-ratio.

4.
Glob Chall ; 4(9): 2000012, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32837737

ABSTRACT

The discovery of Sanal flow choking is a scientific breakthrough and a paradigm shift in the diagnostics of the detonation/hemorrhage in real-world fluid flow systems. The closed-form analytical models capable of predicting the boundary-layer blockage factor for both 2D and 3D cases at the Sanal flow choking for adiabatic and diabatic fluid flow conditions are critically reviewed here. The beauty and novelty of these models stem from the veracity that at the Sanal flow choking condition for diabatic flows all the conservation laws of nature are satisfied at a unique location, which allows for computational fluid dynamics (CFD) code verification. At the Sanal flow choking condition both the thermal choking and the wall-friction-induced flow choking occur at a single sonic fluid throat location. The blockage factor predicted at the Sanal flow choking condition can be taken as an infallible data for various in silico model verification, validation, and calibration. The 3D blockage factor at the Sanal flow choking is found to be 45.12% lower than the 2D case of a wall-bounded diabatic fluid flow system with air as the working fluid. The physical insight of Sanal flow choking presented in this review article sheds light on finding solutions, through in silico experiments in base flow and nanoflows, for numerous unresolved problems carried forward over the centuries in physical, chemical, and biological sciences for humankind.

SELECTION OF CITATIONS
SEARCH DETAIL
...