Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol ; 19(10): 1255-64, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23102220

ABSTRACT

Microbes are exposed to compounds produced by members of their ecological niche, including molecules with antibiotic or antineoplastic activities. As a result, even bacteria that do not produce such compounds can harbor the genetic machinery to inactivate or degrade these molecules. Here, we investigated environmental actinomycetes for their ability to inactivate doxorubicin, an aminoglycosylated anthracycline anticancer drug. One strain, Streptomyces WAC04685, inactivates doxorubicin via a deglycosylation mechanism. Activity-based purification of the enzymes responsible for drug inactivation identified the NADH dehydrogenase component of respiratory electron transport complex I, which was confirmed by gene inactivation studies. A mechanism where reduction of the quinone ring of the anthracycline by NADH dehydrogenase leads to deglycosylation is proposed. This work adds anticancer drug inactivation to the enzymatic inactivation portfolio of actinomycetes and offers possibilities for novel applications in drug detoxification.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Streptomyces/drug effects , Base Sequence , Drug Resistance, Bacterial , Glycosylation/drug effects , Molecular Sequence Data , NADH Dehydrogenase/antagonists & inhibitors , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Oxidation-Reduction , Streptomyces/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...