Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nat Commun ; 15(1): 3758, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704371

ABSTRACT

Engineering multilayer networks that efficiently connect sets of points in space is a crucial task in all practical applications that concern the transport of people or the delivery of goods. Unfortunately, our current theoretical understanding of the shape of such optimal transport networks is quite limited. Not much is known about how the topology of the optimal network changes as a function of its size, the relative efficiency of its layers, and the cost of switching between layers. Here, we show that optimal networks undergo sharp transitions from symmetric to asymmetric shapes, indicating that it is sometimes better to avoid serving a whole area to save on switching costs. Also, we analyze the real transportation networks of the cities of Atlanta, Boston, and Toronto using our theoretical framework and find that they are farther away from their optimal shapes as traffic congestion increases.

2.
Phys Rev E ; 109(2-1): 024313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491583

ABSTRACT

Multiplex networks are collections of networks with identical nodes but distinct layers of edges. They are genuine representations of a large variety of real systems whose elements interact in multiple fashions or flavors. However, multiplex networks are not always simple to observe in the real world; often, only partial information on the layer structure of the networks is available, whereas the remaining information is in the form of aggregated, single-layer networks. Recent works have proposed solutions to the problem of reconstructing the hidden multiplexity of single-layer networks using tools proper for network science. Here, we develop a machine-learning framework that takes advantage of graph embeddings, i.e., representations of networks in geometric space. We validate the framework in systematic experiments aimed at the reconstruction of synthetic and real-world multiplex networks, providing evidence that our proposed framework not only accomplishes its intended task, but often outperforms existing reconstruction techniques.

3.
R Soc Open Sci ; 10(11): 230542, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37920567

ABSTRACT

Estimating the influence that individual nodes have on one another in a Boolean network is essential to predict and control the system's dynamical behaviour, for example, detecting key therapeutic targets to control pathways in models of biological signalling and regulation. Exact estimation is generally not possible due to the fact that the number of configurations that must be considered grows exponentially with the system size. However, approximate, scalable methods exist in the literature. These methods can be divided into two main classes: (i) graph-theoretic methods that rely on representations of Boolean dynamics into static graphs and (ii) mean-field approaches that describe average trajectories of the system but neglect dynamical correlations. Here, we compare systematically the performance of these state-of-the-art methods on a large collection of real-world gene regulatory networks. We find comparable performance across methods. All methods underestimate the ground truth, with mean-field approaches having a better recall but a worse precision than graph-theoretic methods. Computationally speaking, graph-theoretic methods are faster than mean-field ones in sparse networks, but are slower in dense networks. The preference of which method to use, therefore, depends on a network's connectivity and the relative importance of recall versus precision for the specific application at hand.

4.
Phys Rev E ; 108(3-1): 034310, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849099

ABSTRACT

Message passing (MP) is a computational technique used to find approximate solutions to a variety of problems defined on networks. MP approximations are generally accurate in locally treelike networks but require corrections to maintain their accuracy level in networks rich with short cycles. However, MP may already be computationally challenging on very large networks and additional costs incurred by correcting for cycles could be prohibitive. We show how the issue can be addressed. By allowing each node in the network to have its own level of approximation, one can focus on improving the accuracy of MP approaches in a targeted manner. We perform a systematic analysis of 109 real-world networks and show that our node-based MP approximation is able to increase both the accuracy and speed of traditional MP approaches. We find that, compared to conventional MP, a heterogeneous approach based on a simple heuristic is more accurate in 81% of tested networks, faster in 64% of cases, and both more accurate and faster in 49% of cases.

5.
Phys Rev E ; 107(5-1): 054306, 2023 May.
Article in English | MEDLINE | ID: mdl-37329077

ABSTRACT

The problem of influence maximization, i.e., finding the set of nodes having maximal influence on a network, is of great importance for several applications. In the past two decades, many heuristic metrics to spot influencers have been proposed. Here, we introduce a framework to boost the performance of such metrics. The framework consists in dividing the network into sectors of influence, and then selecting the most influential nodes within these sectors. We explore three different methodologies to find sectors in a network: graph partitioning, graph hyperbolic embedding, and community structure. The framework is validated with a systematic analysis of real and synthetic networks. We show that the gain in performance generated by dividing a network into sectors before selecting the influential spreaders increases as the modularity and heterogeneity of the network increase. Also, we show that the division of the network into sectors can be efficiently performed in a time that scales linearly with the network size, thus making the framework applicable to large-scale influence maximization problems.

6.
Phys Rev E ; 107(2-1): 024310, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932495

ABSTRACT

We investigate the avalanche temporal statistics of the susceptible-infected-susceptible (SIS) model when the dynamics is critical and takes place on finite random networks. By considering numerical simulations on annealed topologies we show that the survival probability always exhibits three distinct dynamical regimes. Size-dependent crossover timescales separating them scale differently for homogeneous and for heterogeneous networks. The phenomenology can be qualitatively understood based on known features of the SIS dynamics on networks. A fully quantitative approach based on Langevin theory is shown to perfectly reproduce the results for homogeneous networks, while failing in the heterogeneous case. The analysis is extended to quenched random networks, which behave in agreement with the annealed case for strongly homogeneous and strongly heterogeneous networks.

7.
Phys Rev E ; 107(2-1): 024309, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932554

ABSTRACT

A multiplex is a collection of network layers, each representing a specific type of edges. This appears to be a genuine representation of many real-world systems. However, due to a variety of potential factors, such as limited budget and equipment, or physical impossibility, multiplex data can be difficult to observe directly. Often, only partial information on the layer structure of the system is available, whereas the remaining information is in the form of a single-layer network. In this work we face the problem of reconstructing the hidden multiplex structure of an aggregated network from partial information. We propose an algorithm that leverages the layerwise community structure that can be learned from partial observations to reconstruct the ground-truth topology of the unobserved part of the multiplex. The algorithm is characterized by a computational time that grows linearly with the network size. We perform a systematic study of reconstruction problems for both synthetic and real-world multiplex networks. We show that the ability of the proposed method to solve the reconstruction problem is affected by the heterogeneity of the individual layers and the similarity among the layers. On real-world networks, we observe that the accuracy of the reconstruction saturates quickly as the amount of available information increases. In genetic interaction and scientific collaboration multiplexes, for example, we find that 10% of ground-truth information yields 70% accuracy, while 30% information allows for more than 90% accuracy.

8.
Nat Commun ; 14(1): 1308, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36894591

ABSTRACT

Percolation establishes the connectivity of complex networks and is one of the most fundamental critical phenomena for the study of complex systems. On simple networks, percolation displays a second-order phase transition; on multiplex networks, the percolation transition can become discontinuous. However, little is known about percolation in networks with higher-order interactions. Here, we show that percolation can be turned into a fully fledged dynamical process when higher-order interactions are taken into account. By introducing signed triadic interactions, in which a node can regulate the interactions between two other nodes, we define triadic percolation. We uncover that in this paradigmatic model the connectivity of the network changes in time and that the order parameter undergoes a period doubling and a route to chaos. We provide a general theory for triadic percolation which accurately predicts the full phase diagram on random graphs as confirmed by extensive numerical simulations. We find that triadic percolation on real network topologies reveals a similar phenomenology. These results radically change our understanding of percolation and may be used to study complex systems in which the functional connectivity is changing in time dynamically and in a non-trivial way, such as in neural and climate networks.

9.
Phys Rev E ; 106(3-1): 034301, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266883

ABSTRACT

We study influence maximization on temporal networks. This is a special setting where the influence function is not submodular, and there is no optimality guarantee for solutions achieved via greedy optimization. We perform an exhaustive analysis on both real and synthetic networks. We show that the influence function of randomly sampled sets of seeds often violates the necessary conditions for submodularity. However, when sets of seeds are selected according to the greedy optimization strategy, the influence function behaves effectively as a submodular function. Specifically, violations of the necessary conditions for submodularity are never observed in real networks, and only rarely in synthetic ones. The direct comparison with exact solutions obtained via brute-force search indicates that the greedy strategy provides approximate solutions that are well within the optimality gap guaranteed for strictly submodular functions. Greedy optimization appears, therefore, to be an effective strategy for the maximization of influence on temporal networks.

10.
Nat Commun ; 13(1): 3457, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710639

ABSTRACT

The optimization problem aiming at the identification of minimal sets of nodes able to drive the dynamics of Boolean networks toward desired long-term behaviors is central for some applications, as for example the detection of key therapeutic targets to control pathways in models of biological signaling and regulatory networks. Here, we develop a method to solve such an optimization problem taking inspiration from the well-studied problem of influence maximization for spreading processes in social networks. We validate the method on small gene regulatory networks whose dynamical landscapes are known by means of brute-force analysis. We then systematically study a large collection of gene regulatory networks. We find that for about 65% of the analyzed networks, the minimal driver sets contain less than 20% of their nodes.


Subject(s)
Algorithms , Gene Regulatory Networks , Social Networking
11.
Nat Commun ; 13(1): 1308, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288567

ABSTRACT

Statistical laws of information avalanches in social media appear, at least according to existing empirical studies, not robust across systems. As a consequence, radically different processes may represent plausible driving mechanisms for information propagation. Here, we analyze almost one billion time-stamped events collected from several online platforms - including Telegram, Twitter and Weibo - over observation windows longer than ten years, and show that the propagation of information in social media is a universal and critical process. Universality arises from the observation of identical macroscopic patterns across platforms, irrespective of the details of the specific system at hand. Critical behavior is deduced from the power-law distributions, and corresponding hyperscaling relations, characterizing size and duration of avalanches of information. Statistical testing on our data indicates that a mixture of simple and complex contagion characterizes the propagation of information in social media. Data suggest that the complexity of the process is correlated with the semantic content of the information that is propagated.


Subject(s)
Social Media , Humans
12.
Phys Rev E ; 104(4-1): 044315, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781460

ABSTRACT

Network embedding techniques aim to represent structural properties of graphs in geometric space. Those representations are considered useful in downstream tasks such as link prediction and clustering. However, the number of graph embedding methods available on the market is large, and practitioners face the nontrivial choice of selecting the proper approach for a given application. The present work attempts to close this gap of knowledge through a systematic comparison of 11 different methods for graph embedding. We consider methods for embedding networks in the hyperbolic and Euclidean metric spaces, as well as nonmetric community-based embedding methods. We apply these methods to embed more than 100 real-world and synthetic networks. Three common downstream tasks - mapping accuracy, greedy routing, and link prediction - are considered to evaluate the quality of the various embedding methods. Our results show that some Euclidean embedding methods excel in greedy routing. As for link prediction, community-based and hyperbolic embedding methods yield an overall performance that is superior to that of Euclidean-space-based approaches. We compare the running time for different methods and further analyze the impact of different network characteristics such as degree distribution, modularity, and clustering coefficients on the quality of the embedding results. We release our evaluation framework to provide a standardized benchmark for arbitrary embedding methods.

13.
Nat Commun ; 12(1): 3772, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145234

ABSTRACT

Network embedding is a general-purpose machine learning technique that encodes network structure in vector spaces with tunable dimension. Choosing an appropriate embedding dimension - small enough to be efficient and large enough to be effective - is challenging but necessary to generate embeddings applicable to a multitude of tasks. Existing strategies for the selection of the embedding dimension rely on performance maximization in downstream tasks. Here, we propose a principled method such that all structural information of a network is parsimoniously encoded. The method is validated on various embedding algorithms and a large corpus of real-world networks. The embedding dimension selected by our method in real-world networks suggest that efficient encoding in low-dimensional spaces is usually possible.

14.
Phys Rev E ; 103(2): L020302, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736024

ABSTRACT

We investigate how the properties of inhomogeneous patterns of activity, appearing in many natural and social phenomena, depend on the temporal resolution used to define individual bursts of activity. To this end, we consider time series of microscopic events produced by a self-exciting Hawkes process, and leverage a percolation framework to study the formation of macroscopic bursts of activity as a function of the resolution parameter. We find that the very same process may result in different distributions of avalanche size and duration, which are understood in terms of the competition between the 1D percolation and the branching process universality class. Pure regimes for the individual classes are observed at specific values of the resolution parameter corresponding to the critical points of the percolation diagram. A regime of crossover characterized by a mixture of the two universal behaviors is observed in a wide region of the diagram. The hybrid scaling appears to be a likely outcome for an analysis of the time series based on a reasonably chosen, but not precisely adjusted, value of the resolution parameter.

15.
Phys Rev E ; 103(2-1): 022316, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736102

ABSTRACT

Graph embedding methods are becoming increasingly popular in the machine learning community, where they are widely used for tasks such as node classification and link prediction. Embedding graphs in geometric spaces should aid the identification of network communities as well because nodes in the same community should be projected close to each other in the geometric space, where they can be detected via standard data clustering algorithms. In this paper, we test the ability of several graph embedding techniques to detect communities on benchmark graphs. We compare their performance against that of traditional community detection algorithms. We find that the performance is comparable, if the parameters of the embedding techniques are suitably chosen. However, the optimal parameter set varies with the specific features of the benchmark graphs, like their size, whereas popular community detection algorithms do not require any parameter. So, it is not possible to indicate beforehand good parameter sets for the analysis of real networks. This finding, along with the high computational cost of embedding a network and grouping the points, suggests that, for community detection, current embedding techniques do not represent an improvement over network clustering algorithms.

16.
Phys Rev E ; 103(1-1): 012305, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33601591

ABSTRACT

The fundamental idea of embedding a network in a metric space is rooted in the principle of proximity preservation. Nodes are mapped into points of the space with pairwise distance that reflects their proximity in the network. Popular methods employed in network embedding either rely on implicit approximations of the principle of proximity preservation or implement it by enforcing the geometry of the embedding space, thus hindering geometric properties that networks may spontaneously exhibit. Here we take advantage of a model-free embedding method explicitly devised for preserving pairwise proximity and characterize the geometry emerging from the mapping of several networks, both real and synthetic. We show that the learned embedding has simple and intuitive interpretations: the distance of a node from the geometric center is representative for its closeness centrality, and the relative positions of nodes reflect the community structure of the network. Proximity can be preserved in relatively low-dimensional embedding spaces, and the hidden geometry displays optimal performance in guiding greedy navigation regardless of the specific network topology. We finally show that the mapping provides a natural description of contagion processes on networks, with complex spatiotemporal patterns represented by waves propagating from the geometric center to the periphery. The findings deepen our understanding of the model-free hidden geometry of complex networks.

17.
Phys Rev E ; 102(5-1): 052309, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327169

ABSTRACT

Containment measures implemented by some countries to suppress the spread of COVID-19 have resulted in a slowdown of the epidemic characterized by time series of daily infections plateauing over extended periods of time. We prove that such a dynamical pattern is compatible with critical susceptible-infected-removed (SIR) dynamics. In traditional analyses of the critical SIR model, the critical dynamical regime is started from a single infected node. The application of containment measures to an ongoing epidemic, however, has the effect to make the system enter in its critical regime with a number of infected individuals potentially large. We describe how such nontrivial starting conditions affect the critical behavior of the SIR model. We perform a theoretical and large-scale numerical investigation of the model. We show that the expected outbreak size is an increasing function of the initial number of infected individuals, while the expected duration of the outbreak is a nonmonotonic function of the initial number of infected individuals. Also, we precisely characterize the magnitude of the fluctuations associated with the size and duration of the outbreak in critical SIR dynamics with nontrivial initial conditions. Far from herd immunity, fluctuations are much larger than average values, thus indicating that predictions of plateauing time series may be particularly challenging.


Subject(s)
COVID-19/epidemiology , Epidemics , Models, Statistical , COVID-19/transmission , Disease Outbreaks , Disease Susceptibility , Humans
18.
Phys Rev E ; 102(4-1): 042307, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212670

ABSTRACT

We consider the optimization problem of seeding a spreading process on a temporal network so that the expected size of the resulting outbreak is maximized. We frame the problem for a spreading process following the rules of the susceptible-infected-recovered model with temporal scale equal to the one characterizing the evolution of the network topology. We perform a systematic analysis based on a corpus of 12 real-world temporal networks and quantify the performance of solutions to the influence maximization problem obtained using different level of information about network topology and dynamics. We find that having perfect knowledge of the network topology but in a static and/or aggregated form is not helpful in solving the influence maximization problem effectively. Knowledge, even if partial, of the early stages of the network dynamics appears instead essential for the identification of quasioptimal sets of influential spreaders.

19.
Sci Rep ; 9(1): 15095, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31641200

ABSTRACT

Influence maximization is the problem of finding the set of nodes of a network that maximizes the size of the outbreak of a spreading process occurring on the network. Solutions to this problem are important for strategic decisions in marketing and political campaigns. The typical setting consists in the identification of small sets of initial spreaders in very large networks. This setting makes the optimization problem computationally infeasible for standard greedy optimization algorithms that account simultaneously for information about network topology and spreading dynamics, leaving space only to heuristic methods based on the drastic approximation of relying on the geometry of the network alone. The literature on the subject is plenty of purely topological methods for the identification of influential spreaders in networks. However, it is unclear how far these methods are from being optimal. Here, we perform a systematic test of the performance of a multitude of heuristic methods for the identification of influential spreaders. We quantify the performance of the various methods on a corpus of 100 real-world networks; the corpus consists of networks small enough for the application of greedy optimization so that results from this algorithm are used as the baseline needed for the analysis of the performance of the other methods on the same corpus of networks. We find that relatively simple network metrics, such as adaptive degree or closeness centralities, are able to achieve performances very close to the baseline value, thus providing good support for the use of these metrics in large-scale problem settings. Also, we show that a further 2-5% improvement towards the baseline performance is achievable by hybrid algorithms that combine two or more topological metrics together. This final result is validated on a small collection of large graphs where greedy optimization is not applicable.

20.
Phys Rev E ; 100(1-1): 010401, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499795

ABSTRACT

Experimental and computational studies provide compelling evidence that neuronal systems are characterized by power-law distributions of neuronal avalanche sizes. This fact is interpreted as an indication that these systems are operating near criticality, and, in turn, typical properties of critical dynamical processes, such as optimal information transmission and stability, are attributed to neuronal systems. The purpose of this Rapid Communication is to show that the presence of power-law distributions for the size of neuronal avalanches is not a sufficient condition for the system to operate near criticality. Specifically, we consider a simplistic model of neuronal dynamics on networks and show that the degree distribution of the underlying neuronal network may trigger power-law distributions for neuronal avalanches even when the system is not in its critical regime. To certify and explain our findings we develop an analytical approach based on percolation theory and branching processes techniques.


Subject(s)
Models, Neurological , Neurons/cytology , Nerve Net/cytology , Nerve Net/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...