Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Sci ; 16(6): 854-863, 2019.
Article in English | MEDLINE | ID: mdl-31337959

ABSTRACT

Background: HGF/MET pathway may have a role in pulmonary hypertension (PH). However, the link between the pathway and development of target organ damage in PH remains elusive. We aimed to demonstrate the relation between plasma HGF and HGF/MET tissue expressions in affected organs during PH progression. Methods: 12 weeks old male Wistar rats were injected with monocrotaline (MCT, 60 mg/kg, s.c.) to induce PH and sacrificed after 1, 2 and 4 weeks. Controls received saline. mRNA levels of HGF regulatory complex (Hgf, Met, Hgfa, Hai-1, Hai-2) were determined in right and left ventricles (RV, LV), lungs, pulmonary artery and liver by RT-qPCR. HGF protein levels in plasma were analysed by ELISA. Results: PH development was associated with a progressive elevation of HGF plasma levels that correlated with relative RV mass. Furthermore, Hgf mRNA expressions at week 4 were upregulated solely in the cardiac ventricles while being downregulated in a. pulmonalis, lungs and liver. Met and Hai-1/Hai-2 followed a similar pattern and were upregulated in cardiac ventricles, where Hgfa remained unchanged, but downregulated in lungs. Conclusion: We suggest that cardiac overexpression of Hgf might contribute to increased plasma HGF in MCT-induced PH. HGF could be exploited as a cardiospecific biomarker and HGF/MET pathway as a target in drug discovery for PH.


Subject(s)
Heart Failure/diagnosis , Heart Ventricles/pathology , Hepatocyte Growth Factor/metabolism , Hypertension, Pulmonary/complications , Ventricular Remodeling , Animals , Biomarkers/blood , Biomarkers/metabolism , Disease Models, Animal , Disease Progression , Down-Regulation , Heart Failure/blood , Heart Failure/etiology , Hepatocyte Growth Factor/blood , Humans , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/chemically induced , Male , Monocrotaline/toxicity , Proto-Oncogene Proteins c-met/metabolism , Rats , Rats, Wistar , Up-Regulation
2.
Exp Lung Res ; 45(1-2): 30-41, 2019.
Article in English | MEDLINE | ID: mdl-31012341

ABSTRACT

Aim of the Study: Endothelin-1 (ET-1) overexpression was suggested to play a role in pulmonary hypertension (PH). However, the roles of ET-1 in early stages of PH remain unexplored. We examined the expression of ET-1 and relevant disease progression markers in the pulmonary artery and the lungs during the development of PH induced by monocrotaline (MCT). Material and Methods: Male 12-weeks-old Wistar rats were administered with MCT (60 mg/kg, s.c.) or saline (CON). We measured right ventricular pressure (RVP) by catheterization under tribromoethanol anesthesia; hemoglobin oxygen saturation, breathing rate were measured by pulse oximetry in conscious animals. Rats were sacrificed 1, 2 or 4 weeks after MCT. mRNA levels of ET-1, its receptors, inflammatory markers IL-1beta, TNFalpha, IL-6 and genes related to VSMC proliferation or lung damage (Bmpr2, nestin, Pim1, PAI-1, TGFbeta-1) were analyzed by RT-qPCR. Results: RVP and breathing rate increased and hemoglobin oxygen saturation decreased after MCT only at week 4. Lung weight was increased at all time points. ET-1 was upregulated in the pulmonary artery at weeks 1 and 4, while being clearly suppressed in the lungs at all times. Bone morphogenetic protein receptor 2 followed a similar pattern to ET-1. PAI-1 markedly increased in the MCT lungs (but not pulmonary artery) from week 1 to 4. Nestin peaked at week 2 in both tissues. TGFbeta-1 increased in both tissues at week 4. ET-1 expression did not correlate with other genes, however, Bmpr2 tightly negatively correlated with PAI-1 in the lungs, but not pulmonary artery of MCT groups. Conclusions: ET-1 overexpression in the pulmonary artery preceded development of PH, but it was clearly and unexpectedly downregulated in the lungs of monocrotaline-treated rats and showed no correlation to disease progression markers. We speculate that endothelin-1 may play opposing roles in the lungs vs pulmonary artery in monocrotaline-induced PH.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/metabolism , Endothelin-1/metabolism , Hypertension, Pulmonary/etiology , Lung/metabolism , Pulmonary Artery/metabolism , Animals , Disease Progression , Hypertension, Pulmonary/chemically induced , Male , Monocrotaline/adverse effects , Rats , Rats, Wistar
3.
Clin Exp Hypertens ; 39(8): 754-763, 2017.
Article in English | MEDLINE | ID: mdl-28665713

ABSTRACT

Chronopharmacological effects of antihypertensives play a role in the outcome of hypertension therapy. However, studies produce contradictory findings when combination of valsartan plus amlodipine (VA) is applied. Here, we hypothesized different efficacy of morning versus evening dosing of VA in spontaneously hypertensive rats (SHR) and the involvement of circadian clock genes Bmal1 and Per2. We tested the therapy outcome in short-term and also long-term settings. SHRs aged between 8 and 10 weeks were treated with 10 mg/kg of valsartan and 4 mg/kg of amlodipine, either in the morning or in the evening with treatment duration 1 or 6 weeks and compared with parallel placebo groups. After short-term treatment, only morning dosing resulted in significant blood pressure (BP) control (measured by tail-cuff method) when compared to placebo, while after long-term treatment, both dosing groups gained similar superior results in BP control against placebo. However, mRNA levels of Bmal1 and Per2 (measured by RT-PCR) exhibited an independent pattern, with similar alterations in left and right ventricle, kidney as well as in aorta predominantly in groups with evening dosing in both, short-term and also long-term settings. This was accompanied by increased cardiac mRNA expression of plasminogen activator inhibitor-1. In summary, morning dosing proved to be advantageous due to earlier onset of antihypertensive action; however, long-term treatment was demonstrated to be effective regardless of administration time. Our findings also suggest that combination of VA may serve as an independent modulator of circadian clock and might influence disease progression beyond the primary BP lowering effect.


Subject(s)
Amlodipine/therapeutic use , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , RNA, Messenger/metabolism , Valsartan/therapeutic use , ARNTL Transcription Factors/genetics , Amlodipine/administration & dosage , Animals , Aorta/metabolism , Blood Pressure/drug effects , Circadian Clocks , Drug Administration Schedule , Drug Therapy, Combination , Heart Ventricles/metabolism , Hypertension/physiopathology , Kidney/metabolism , Male , Period Circadian Proteins/genetics , Plasminogen Activator Inhibitor 1/genetics , Rats , Rats, Inbred SHR , Valsartan/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...