Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(2)2023 01 22.
Article in English | MEDLINE | ID: mdl-36830586

ABSTRACT

The terminal complement complex (TCC) has been described as a potential driver in the pathogenesis of posttraumatic osteoarthritis (PTOA). However, sublytic TCC deposition might also play a crucial role in bone development and regeneration. Therefore, we elucidated the effects of TCC on joint-related tissues using a rabbit PTOA model. In brief, a C6-deficient rabbit breed was characterized on genetic, protein, and functional levels. Anterior cruciate ligament transection (ACLT) was performed in C6-deficient (C6-/-) and C6-sufficient (C6+/-) rabbits. After eight weeks, the progression of PTOA was determined histologically. Moreover, the structure of the subchondral bone was evaluated by µCT analysis. C6 deficiency could be attributed to a homozygous 3.6 kb deletion within the C6 gene and subsequent loss of the C5b binding site. Serum from C6-/- animals revealed no hemolytic activity. After ACLT surgery, joints of C6-/- rabbits exhibited significantly lower OA scores, including reduced cartilage damage, hypocellularity, cluster formation, and osteophyte number, as well as lower chondrocyte apoptosis rates and synovial prostaglandin E2 levels. Moreover, ACLT surgery significantly decreased the trabecular number in the subchondral bone of C6-/- rabbits. Overall, the absence of TCC protected from injury-induced OA progression but had minor effects on the micro-structure of the subchondral bone.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Rabbits , Complement Membrane Attack Complex/pharmacology , Cartilage, Articular/pathology , Osteoarthritis/pathology , Anterior Cruciate Ligament/pathology , Anterior Cruciate Ligament/surgery , Chondrocytes/pathology
2.
Am J Med Genet A ; 188(1): 216-223, 2022 01.
Article in English | MEDLINE | ID: mdl-34611991

ABSTRACT

Pathogenic biallelic variants in POL3RA have been associated with different disorders characterized by progressive neurological deterioration. These include the 4H leukodystrophy syndrome (hypomyelination, hypogonadotropic hypogonadism, and hypodontia) and adolescent-onset progressive spastic ataxia, as well as Wiedemann-Rautenstrauch syndrome (WRS), a recognizable neonatal progeroid syndrome. The phenotypic differences between these disorders are thought to occur mainly due to different functional effects of underlying POLR3A variants. Here we present the detailed clinical course of a 37-year-old woman in whom we identified a homozygous synonymous POLR3A variant c.3336G>A resulting in leaky splicing r.[3336ins192, =, 3243_3336del94]. She presented at birth with intrauterine growth retardation, lipodystrophy, muscular hypotonia, and several WRS-like facial features, albeit without sparse hair and prominent scalp veins. She had no signs of developmental delay or intellectual disability. Over the years, above characteristic facial features, she showed severe postnatal growth retardation, global lipodystrophy, joint contractures, thoracic hypoplasia, scoliosis, anodontia, spastic quadriplegia, bilateral hearing loss, aphonia, hypogonadotropic hypogonadism, and cerebellar peduncles hyperintensities in brain imaging. These manifestations partially overlap the clinical features of the previously reported POLR3A-associated disorders, mostly mimicking the WRS. Thus, our study expands the POLR3A-mediated phenotypic spectrum and suggests existence of a phenotypic continuum underlying biallelic POLR3A variants.


Subject(s)
Optic Atrophy , Progeria , Spinocerebellar Ataxias , Adolescent , Adult , Ataxia , Female , Humans , Infant, Newborn , Progeria/pathology , RNA Polymerase III/genetics
3.
J Clin Invest ; 127(10): 3598-3608, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28846075

ABSTRACT

The tumor suppressor p53, a master regulator of the cellular response to stress, is tightly regulated by the E3 ubiquitin ligase MDM2 via an autoregulatory feedback loop. In addition to its well-established role in tumorigenesis, p53 has also been associated with aging in mice. Several mouse models with aberrantly increased p53 activity display signs of premature aging. However, the relationship between dysfunction of the MDM2/p53 axis and human aging remains elusive. Here, we have identified an antiterminating homozygous germline mutation in MDM2 in a patient affected by a segmental progeroid syndrome. We show that this mutation abrogates MDM2 activity, thereby resulting in enhanced levels and stability of p53. Analysis of the patient's primary cells, genome-edited cells, and in vitro and in vivo analyses confirmed the MDM2 mutation's aberrant regulation of p53 activity. Functional data from a zebrafish model further demonstrated that mutant Mdm2 was unable to rescue a p53-induced apoptotic phenotype. Altogether, our findings indicate that mutant MDM2 is a likely driver of the observed segmental form of progeria.


Subject(s)
Aging, Premature , Germ-Line Mutation , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Zebrafish Proteins , Zebrafish , Aging, Premature/genetics , Aging, Premature/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , Disease Models, Animal , Humans , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...