Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 18(10): 2183-2187, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37061926

ABSTRACT

New technologies are required to combat the challenges faced with manufacturing commercial quantities of oligonucleotide drug substances which are required for treating large patient populations. Herein we report a convergent biocatalytic synthesis strategy for an Alnylam model siRNA. The siRNA chemical structure includes several of the unnatural modifications and conjugations typical of siRNA drug substances. Using Almac's 3-2-3-2 hybrid RNA ligase enzyme strategy that sequentially ligates short oligonucleotide fragments (blockmers), the target siRNA was produced to high purity at 1 mM concentration. Additional strategies were investigated including the use of polynucleotide kinase phosphorylation and the use of crude blockmer starting materials without chromatographic purification. These findings highlight a path toward a convergent synthesis of siRNAs for large-scale manufacture marrying both enzymatic liquid and classical solid-phase synthesis.


Subject(s)
Oligonucleotides , Humans , RNA, Small Interfering/genetics , Biocatalysis , Oligonucleotides/chemistry , Phosphorylation
2.
ACS Med Chem Lett ; 4(4): 414-8, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-24900686

ABSTRACT

To resolve the metabolite redox cycling associated with our earlier clinical compound 2, we carried out lead optimization of lead molecule 1. Compound 4 showed improved lipophilic ligand efficiency and demonstrated robust glucose lowering in diet-induced obese mice without a liability in predictive preclinical drug safety studies. Thus, it was selected as a clinical candidate and further studied in type 2 diabetic patients. Clinical data suggests no evidence of metabolite cycling, which is consistent with the preclinical profiling of metabolism.

3.
J Med Chem ; 55(16): 7021-36, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22809456

ABSTRACT

Glucokinase (GK) activation as a potential strategy to treat type 2 diabetes (T2D) is well recognized. Compound 1, a glucokinase activator (GKA) lead that we have previously disclosed, caused reversible hepatic lipidosis in repeat-dose toxicology studies. We hypothesized that the hepatic lipidosis was due to the structure-based toxicity and later established that it was due to the formation of a thiourea metabolite, 2. Subsequent SAR studies of 1 led to the identification of a pyrazine-based lead analogue 3, lacking the thiazole moiety. In vivo metabolite identification studies, followed by the independent synthesis and profiling of the cyclopentyl keto- and hydroxyl- metabolites of 3, led to the selection of piragliatin, 4, as the clinical lead. Piragliatin was found to lower pre- and postprandial glucose levels, improve the insulin secretory profile, increase ß-cell sensitivity to glucose, and decrease hepatic glucose output in patients with T2D.


Subject(s)
Benzeneacetamides/chemical synthesis , Diabetes Mellitus, Type 2/drug therapy , Enzyme Activators/chemical synthesis , Glucokinase/metabolism , Hypoglycemic Agents/chemical synthesis , Animals , Benzeneacetamides/pharmacokinetics , Benzeneacetamides/pharmacology , Dogs , Enzyme Activators/pharmacokinetics , Enzyme Activators/pharmacology , Female , Glucose/metabolism , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Lipidoses/metabolism , Liver/metabolism , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Postprandial Period , Rabbits , Rats , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship
4.
J Org Chem ; 67(5): 1580-7, 2002 Mar 08.
Article in English | MEDLINE | ID: mdl-11871890

ABSTRACT

The 1 alpha-hydroxy A-ring phosphine oxide 1, a useful building block for vitamin D analogues, was synthesized from (S)-carvone in nine synthetic operations and a single chromatographic purification in 25% overall yield. The synthesis features two novel efficient synthetic transformations: the Criegee rearrangement of alpha-methoxy hydroperoxyacetate 10 in methanol to obtain directly the desired secondary 3 beta-alcohol 11 and the highly chemo- and stereoselective isomerization of dieneoxide ester (E)-7 to the 1 alpha-allylic alcohol with an exocyclic double bond (E)-8. Further insight into the selectivity control of the latter rearrangement was obtained from the reactions of (Z)-epimeric substrates. The new synthetic approach leading to the 1 alpha-hydroxy epimers complements our previously reported synthesis of the corresponding 1 beta-epimers, thus producing all stereoisomers of these versatile building blocks efficiently from carvone.


Subject(s)
Phosphinic Acids/chemical synthesis , Vitamin A/analogs & derivatives , Vitamin A/chemical synthesis , Catalysis , Chromatography, Thin Layer , Cyclohexane Monoterpenes , Heptanes/chemical synthesis , Heptanes/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Monoterpenes , Oxides/chemical synthesis , Oxides/chemistry , Phosphines , Phosphinic Acids/chemistry , Silanes/chemical synthesis , Silanes/chemistry , Stereoisomerism , Terpenes/chemistry , Vitamin A/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...