Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 66(11): 2195-2203, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36053297

ABSTRACT

Early peaks of airborne ragweed (Ambrosia L.) pollen concentrations were observed at several monitoring stations in Hungary in June 2017 and 2018, one month before the usual start of the pollen season at the end of July. Backward trajectories were calculated to simulate potential sources of pollen collected at different locations in the Pannonian Biogeographical Region. In a collaboration between aerobiological and phenological networks, a nationwide campaign was conducted to collect field data of ragweed blooming. During field surveys, ragweed plants having extremely early blooming were found most abundantly in a rural site near Vaja (North-East Hungary) and other locations in Hungary. Field observations matched with source areas identified by trajectory analyses; i.e., early-flowering ragweed plants were found at some of these locations. Although similar peaks of airborne pollen concentrations were not detected in other years (e.g., 2016, 2019-2021), alarming results suggest the possibility of expanding seasons of ragweed allergy.


Subject(s)
Ambrosia , Hypersensitivity , Environmental Monitoring/methods , Pollen , Seasons , Allergens/analysis
2.
Int J Biometeorol ; 53(3): 263-72, 2009 May.
Article in English | MEDLINE | ID: mdl-19224251

ABSTRACT

This study aims to find likely sources of Ambrosia pollen recorded during 2007 at five pollen-monitoring sites in central Europe: Novi Sad, Ruma, Negotin and Nis (Serbia) and Skopje (Macedonia). Ambrosia plants start flowering early in the morning and so Ambrosia pollen grains recorded during the day are likely to be from a local source. Conversely, Ambrosia pollen grains recorded at night or very early in the morning may have arrived via long-range transport. Ambrosia pollen counts were analysed in an attempt to find possible sources of the pollen and to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. Diurnal variations and the magnitude of Ambrosia pollen counts during the 2007 Ambrosia pollen season showed that Novi Sad and Ruma (Pannonian Plain) and to a lesser degree Negotin (Balkans) were located near to sources of Ambrosia pollen. Mean bi-hourly Ambrosia pollen concentrations peaked during the middle of the day, and concentrations at these sites were notably higher than at Nis and Skopje. Three episodes were selected for further analysis using back-trajectory analysis. Back-trajectories showed that air masses brought Ambrosia pollen from the north to Nis and, on one occasion, to Skopje (Balkans) during the night and early morning after passing to the east of Novi Sad and Ruma during the previous day. The results of this study identified the southern part of the Pannonian Plain around Novi Sad and Ruma as being a potential source region for Ambrosia pollen recorded at Nis and Skopje in the Balkans.


Subject(s)
Air Pollutants/analysis , Allergens/analysis , Ambrosia/physiology , Circadian Rhythm/physiology , Environmental Exposure/analysis , Environmental Monitoring/methods , Pollen , Climate , Europe
SELECTION OF CITATIONS
SEARCH DETAIL
...