Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Oncol Pharm Pract ; 30(2): 304-312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37151021

ABSTRACT

Objective: The purpose of this study was to investigate the efficacy and safety of netupitant/palonosetron (NEPA) for the prevention of chemotherapy-induced nausea and vomiting (CINV) for hematopoietic cell transplantation (HCT) patients receiving BEAM therapy. Study Design: This phase II, prospective, intention-to-treat, single-center, single-arm study involved 43 adult patients who received NEPA and dexamethasone for the prevention of CINV due to BEAM conditioning chemotherapy. An interim analysis, performed after 13 patients, determined utility versus futility, and supported continuation to full enrollment. Descriptive statistics were used to report complete response (CR), complete protection, incidence of emesis, and administration of rescue agents. A Kaplan-Meier curve depicted time to first emesis and first rescue medication. Patients self-reported levels of daily nausea descriptively via a CINV Questionnaire. Results: By study end, 13 of 43 patients achieved a CR with an average of 10.6 emesis-free days (SD 0.95) over the 11-day observation period, with no emetic events in any patient during the acute/chemotherapy phase. Nausea was well-controlled throughout the acute therapy phase (Day 1-6) and increased during the delayed phase (Day 7-11) with a peak mean level of 2.79/10 at Day 10. Aside from lower grade (≤2), headaches, constipation, and diarrhea were the most widely reported adverse effects. Conclusion: The combination of NEPA and dexamethasone is safe and effective for the prevention of CINV in patients receiving BEAM conditioning therapy prior to HCT. The regimen demonstrated greater effectiveness in the acute phase versus the delayed phase, with low levels of nausea throughout the study period and complete emesis prevention during chemotherapy.


Subject(s)
Antiemetics , Antineoplastic Agents , Benzeneacetamides , Piperazines , Pyridines , Adult , Humans , Palonosetron/therapeutic use , Prospective Studies , Vomiting/chemically induced , Vomiting/prevention & control , Vomiting/drug therapy , Nausea/chemically induced , Nausea/prevention & control , Nausea/drug therapy , Quinuclidines/therapeutic use , Dexamethasone , Antineoplastic Agents/adverse effects , Cell Transplantation
2.
Pharmacotherapy ; 39(6): 677-688, 2019 06.
Article in English | MEDLINE | ID: mdl-30351459

ABSTRACT

In 2000, the first biphasic modified-release (MR) formulation of methylphenidate (MPH) was approved for the treatment of attention-deficit/hyperactivity disorder (ADHD). An immediate-release (IR) MPH pulse (22% of the dose) facilitates rapid onset of stimulant action, while the remaining MR portion of the dose provides for day-long duration of efficacy. A wide array of oral MR-MPH products has subsequently been approved that also allows for once-daily dosing, though each product is characterized by distinctive exposure time courses. This review compares each member of the current MPH armamentarium to assist in the rational selection of a specific MPH regimen for the individualized treatment of patients with ADHD. The IR portion of biphasic MPH formulations now ranges from 15%, 20%, 22%, 25%, 30%, and 37% IR-MPH, as well as a 50% IR-MPH product whose distinctly pulsatile time course closely resembles that of the pre-century "gold standard" twice-daily IR-MPH regimen. Further, transdermal, suspension, and orally disintegrating tablet products are now available to overcome any solid dosage form swallowing difficulties. Most of these formulations are racemic, though in 2001, a chiral switch drug IR-dexmethylphenidate (dexMPH) was approved, followed by biphasic MR-dexMPH (50% IR) in 2005. New U.S. Food and Drug Administration (FDA) partial area under the curve (pAUC) bioavailability metrics have improved discrimination between specific generic MR-MPH products. This has resulted in two Orange Book MR-MPH products being recoded from "AB" (i.e., meets necessary bioequivalence requirements) to "BX" (i.e., insufficient data to confirm bioequivalence). The metabolic drug interaction between MPH and alcohol, which increases MPH bioavailability, potentiates euphoric effects, and heightens abuse liability, is discussed. This review concludes with brief considerations of pharmacogenomic predictors of ADHD first-line drug selection, carboxylesterase allelic variants influencing interindividual MPH metabolism, and novel MPH formulations in the regulatory pipeline.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Dexmethylphenidate Hydrochloride/pharmacokinetics , Dexmethylphenidate Hydrochloride/therapeutic use , Methylphenidate/pharmacokinetics , Methylphenidate/therapeutic use , Precision Medicine/methods , Central Nervous System Stimulants/pharmacokinetics , Central Nervous System Stimulants/therapeutic use , Delayed-Action Preparations/adverse effects , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/therapeutic use , Dexmethylphenidate Hydrochloride/adverse effects , Dosage Forms , Drug Administration Schedule , Humans , Methylphenidate/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...