Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Struct Biol ; 212(1): 107604, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32805411

ABSTRACT

Insoluble amyloid fibrils formed by self-assembly of amyloidogenic regions of proteins have a cross-ß-structure. In this work, by using targeted molecular dynamics and rigid body simulation, we demonstrate that if a protein consists of an amyloidogenic region and a globular domain(s) and if the linker between them is short enough, such molecules cannot assemble into amyloid fibrils, instead, they form oligomers with a defined and limited number of ß-strands in the cross-ß core. We show that this blockage of the amyloid growth is due to the steric repulsion of the globular structures linked to amyloidogenic regions. Furthermore, we establish a relationship between the linker length and the number of monomers in such nanoparticles. We hypothesise that such oligomerisation can be a yet unrecognised way to form natural protein complexes involved in biological processes. Our results can also be used in protein engineering for designing soluble nanoparticles carrying different functional domains.


Subject(s)
Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Molecular Dynamics Simulation , Protein Conformation , Protein Engineering/methods
2.
J Mol Biol ; 430(20): 3835-3846, 2018 10 12.
Article in English | MEDLINE | ID: mdl-29860028

ABSTRACT

In many disease-related and functional amyloids, the amyloid-forming regions of proteins are flanked by globular domains. When located in close vicinity of the amyloid regions along the chain, the globular domains can prevent the formation of amyloids because of the steric repulsion. Experimental tests of this effect are few in number and non-systematic, and their interpretation is hampered by polymorphism of amyloid structures. In this situation, modeling approaches that use such a clear-cut criterion as the steric tension can give us highly trustworthy results. In this work, we evaluated this steric effect by using molecular modeling and dynamics. As an example, we tested hybrid proteins containing an amyloid-forming fragment of Aß peptide (17-42) linked to one or two globular domains of GFP. Searching for the shortest possible linker, we constructed models with pseudo-helical arrangements of the densely packed GFPs around the Aß amyloid core. The molecular modeling showed that linkers of 7 and more residues allow fibrillogenesis of the Aß-peptide flanked by GFP on one side and 18 and more residues when Aß-peptide is flanked by GFPs on both sides. Furthermore, we were able to establish a more general relationship between the size of the globular domains and the length of the linkers by using analytical expressions and rigid body simulations. Our results will find use in planning and interpretation of experiments, improvement of the prediction of amyloidogenic regions in proteins, and design of new functional amyloids carrying globular domains.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Models, Molecular , Protein Domains , Amino Acid Sequence , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL