Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 10(2)2023 02.
Article in English | MEDLINE | ID: mdl-36750361

ABSTRACT

Science is changing: the volume and complexity of data are increasing, the number of studies is growing and the goal of achieving reproducible results requires new solutions for scientific data management. In the field of neuroscience, the German National Research Data Infrastructure (NFDI-Neuro) initiative aims to develop sustainable solutions for research data management (RDM). To obtain an understanding of the present RDM situation in the neuroscience community, NFDI-Neuro conducted a comprehensive survey among the neuroscience community. Here, we report and analyze the results of the survey. We focused the survey and our analysis on current needs, challenges, and opinions about RDM. The German neuroscience community perceives barriers with respect to RDM and data sharing mainly linked to (1) lack of data and metadata standards, (2) lack of community adopted provenance tracking methods, (3) lack of secure and privacy preserving research infrastructure for sensitive data, (4) lack of RDM literacy, and (5) lack of resources (time, personnel, money) for proper RDM. However, an overwhelming majority of community members (91%) indicated that they would be willing to share their data with other researchers and are interested to increase their RDM skills. Taking advantage of this willingness and overcoming the existing barriers requires the systematic development of standards, tools, and infrastructure, the provision of training, education, and support, as well as additional resources for RDM to the research community and a constant dialogue with relevant stakeholders including policy makers to leverage of a culture change through adapted incentivization and regulation.


Subject(s)
Biomedical Research , Neurosciences , Data Management , Surveys and Questionnaires , Information Dissemination
2.
PeerJ ; 6: e5342, 2018.
Article in English | MEDLINE | ID: mdl-30123698

ABSTRACT

BACKGROUND: Establishment success of non-native species is not only influenced by environmental conditions, but also by interactions with local competitors and enemies. The magnitude of these biotic interactions is mediated by species traits that reflect competitive strength or defence mechanisms. Our aim was to investigate the importance of species traits for successful establishment of non-native species in a native community exhibiting biotic resistance in the form of competition and herbivory. METHODS: We developed a trait-based, individual-based simulation model tracking the survival of non-native plants in a native community. In the model, non-native plants are characterized by high or low values of competition and defence traits. Model scenarios included variation of initial number of non-natives, intensity of competitive interaction, density of herbivores and density as well as mixture of the native community. RESULTS: Traits related to competition had a much greater impact on survival of non-native species than traits related to defence. Survival rates of strong competitors never fell below 50% while survival of weak competitors averaged at about 10%. Weak competitors were also much more susceptible to competitive pressures such as community density, composition and competition intensity. Strong competitors responded negatively to changes in competition intensity, but hardly to composition or density of the native community. High initial numbers of non-native individuals decreased survival rate of strong competitors, but increased the survival rate of weak competitors. Survival under herbivore attack was only slightly higher for plants with high defensive ability than for those with low defensive ability. Surprisingly, though, herbivory increased survival of species classified as weak competitors. DISCUSSION: High survival rates of strong non-native competitors relate to a higher probability of successful establishment than for weak competitors. However, the reduced survival of strong competitors at high initial numbers indicates a self-thinning effect, probably mediated by a strongly competitive milieu. For weak competitors, our model emphasizes positive effects of high propagule pressure known from field studies. General effects of herbivory or defence abilities on survival were not supported by our model. However, the positive effect of herbivory on survival of weak competitors indicated side effects of herbivory, such as weakening resident competitors. This might play an important role for establishment of non-natives in a new community.

SELECTION OF CITATIONS
SEARCH DETAIL
...