Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine (Lond) ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38275157

ABSTRACT

Aim: Despite some successful examples of therapeutic nanoparticles reaching clinical stages, there is still a significant need for novel formulations in order to improve the selectivity and efficacy of cancer treatment. Methods: The authors developed two novel dendrimer-gold (Au) complex-based nanoparticles using two different synthesis routes: complexation method (formulation A) and precipitation method (formulation B). Using a biomimetic cancer-on-a-chip model, the authors evaluated the possible cytotoxicity and internalization by colorectal cancer cells of dendrimer-Au complex-based nanoparticles. Results: The results showed promising capabilities of these nanoparticles for selectively targeting cancer cells and delivering drugs, particularly for the formulation A nanoparticles. Conclusion: This work highlights the potential of dendrimer-Au complex-based nanoparticles as a new strategy to improve the targeting of anticancer drugs.

2.
Photochem Photobiol Sci ; 20(8): 1087-1098, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34398442

ABSTRACT

In this study, C-doped TiO2 nanoparticles (C-TiO2) were prepared and tested as a photosensitizer for visible-light-driven photodynamic therapy against cervical cancer cells (HeLa). X-ray diffraction and Transmission Electron Microscopy confirmed the anatase form of nanoparticles, spherical shape, and size distribution from 5 to 15 nm. Ultraviolet-visible light spectroscopy showed that C doping of TiO2 enhances the optical absorption in the visible light range caused by a bandgap narrowing. The photo-cytotoxic activity of C-TiO2 was investigated in vitro against HeLa cells. The lack of dark cytotoxicity indicates good biocompatibility of C-TiO2. In contrast, a combination with blue light significantly reduced the survival of HeLa cells: illumination only decreased cell viability by 30% (15 min of illumination, 120 µW power), and 60% when HeLa cells were preincubated with C-TiO2. We have also confirmed blue light-induced C-TiO2-catalyzed generation of reactive oxygen species in vitro and intracellularly. Oxidative stress triggered by C-TiO2/blue light was the leading cause of HeLa cell death. Fluorescent labeling of treated HeLa cells showed distinct morphological changes after the C-TiO2/blue light treatment. Unlike blue light illumination, which caused the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing, a combination of C-TiO2/blue light leads to controlled cell death, thus providing a better outcome of local anticancer therapy.


Subject(s)
Carbon/chemistry , Nanoparticles , Phototherapy , Titanium/chemistry , Titanium/pharmacology , Uterine Cervical Neoplasms/pathology , Cell Survival/drug effects , Cell Survival/radiation effects , Combined Modality Therapy , Female , HeLa Cells , Humans
3.
Carbohydr Polym ; 200: 173-182, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30177155

ABSTRACT

The fabrication of antimicrobial textile nanocomposite by in situ synthesis of Cu-based nanoparticles on cotton fabrics modified with different polycarboxylic acids was discussed in this study. In order to evaluate the influence of carboxyl group content on Cu2+-ions adsorption, their subsequent reduction with sodium borohydride and formation of Cu-based nanoparticles, cotton fabrics were modified with succinic, citric and 1,2,3,4-butanetetracarboxylic acids. It was shown that the larger the number of carboxyl groups in applied acid, the larger the content of free carboxyl groups on the fibers and consequently, the larger the Cu2+-ions uptake and total amounts of Cu-based nanoparticles. On the basis of the XPS and XRD measurements, it was suggested that synthesized nanoparticles were mixture of Cu2O and CuO. Fabricated nanocomposites provided maximum reduction of Gram-negative bacterium E. coli and Gram-positive bacterium S. aureus and controlled release of Cu2+-ions in physiological saline solution which are necessary prerequisites for infection prevention.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carboxylic Acids/chemistry , Copper/chemistry , Copper/pharmacology , Cotton Fiber , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
4.
Environ Pollut ; 239: 457-465, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29679943

ABSTRACT

A comprehensive study of the removal of selected biologically active compounds (pharmaceuticals and pesticides) from different water types was conducted using bare TiO2 nanoparticles and TiO2/polyaniline (TP-50, TP-100, and TP-150) nanocomposite powders. In order to investigate how molecular structure of the substrate influences the rate of its removal, we compared degradation efficiency of the initial substrates and degree of mineralization for the active components of pharmaceuticals (propranolol, and amitriptyline) and pesticides (sulcotrione, and clomazone) in double distilled (DDW) and environmental waters. The results indicate that the efficiency of photocatalytic degradation of propranolol and amitriptyline was higher in environmental waters: rivers (Danube, Tisa, and Begej) and lakes (Moharac, and Sot) in comparison with DDW. On the contrary, degradation efficacy of sulcotrione and clomazone was lower in environmental waters. Further, of the all catalysts applied, bare TiO2 and TP-100 were found to be most effective in the mineralization of propranolol and amitriptyline, respectively, while TP-150 appeared to be the most efficient in terms of sulcotrione and clomazone mineralization. Also, there was no significant toxicity observed after the irradiation of pharmaceuticals or pesticides solutions using appropriate catalysts on rat hepatoma (H-4-II-E), mouse neuroblastoma (Neuro-2a), human colon adenocarcinoma (HT-29), and human fetal lung (MRC-5) cell lines. Subsequently, detection and identification of the formed intermediates in the case of sulcotrione photocatalytic degradation using bare TiO2 and TP-150 showed slightly different pathways of degradation. Furthermore, tentative pathways of sulcotrione photocatalytic degradation were proposed and discussed.


Subject(s)
Aniline Compounds/chemistry , Nanocomposites/chemistry , Photochemical Processes , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Animals , Catalysis , Cyclohexanones , Humans , Kinetics , Mesylates , Models, Chemical , Pesticides , Rats , Water Pollutants, Chemical/toxicity
5.
Carbohydr Polym ; 158: 77-84, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28024545

ABSTRACT

This study discusses the biodegradation behavior of cotton and cotton/PET fabrics impregnated with Ag/TiO2 nanoparticles in soil. Biodegradation behavior was evaluated by standard test method ASTM 5988-03 based on determination of percentage conversions of carbon content to CO2 as well as by soil burial test and enzymatic hydrolysis with cellulase where the extent of biodegradation was estimated by the calculation of fabric weight loss. The morphological and chemical changes of fibers during biodegradation process were analyzed by SEM and FTIR spectroscopy, respectively. The results obtained by all applied methods suggested that Ag/TiO2 nanoparticles hindered the biodegradation of investigated cotton and cotton/PET fabrics. Soil burial test indicated faster biodegradation of the impregnated blend compared to impregnated cotton fabric which is attributed to smaller amount of fabricated Ag nanoparticles on the blend proved by AAS measurement. Similar trend was established by enzymatic hydrolysis of cotton fibers. Severe damage of cotton fibers in both fabrics due to biodegradation process was confirmed by SEM. However, the cotton fiber damage occurred to a lesser extent in the samples that were impregnated with Ag/TiO2 nanoparticles. PET fibers remained intact which was also indicated by FTIR analysis.


Subject(s)
Biodegradation, Environmental , Metal Nanoparticles , Soil , Textiles , Cotton Fiber , Polyesters , Titanium
6.
Ultrason Sonochem ; 24: 221-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25487219

ABSTRACT

This study discusses the possibility of using corona pre-treated polypropylene (PP) non-woven fabric as a support for immobilization of colloidal TiO2 and Ag nanoparticles in order to remove dye C.I. Acid Orange 7 from aqueous solution. Dye removal efficiency by sonocatalysis, photocatalysis and sonophotocatalysis was evaluated on corona pre-treated fabric loaded with TiO2 nanoparticles, corona pre-treated fabric double loaded with TiO2 nanoparticles and corona pre-treated fabrics loaded with TiO2 nanoparticles before and after deposition of Ag nanoparticles. In addition, the stability of PP non-woven fabric during these processes was investigated. The substrates were characterized by SEM, EDX and AAS analyses. The change of the dye concentration was evaluated by UV-VIS spectrophotometry. Unlike sonocatalysis and photocatalysis, complete dye removal from both solution and non-woven fabric was obtained already after 240-270 min of sonophotocatalysis. Corona pre-treated PP non-woven fabric loaded with Ag nanoparticles prior to deposition of TiO2 nanoparticles provided excellent degradation efficiency and superior reusability. Sonophotocatalytic degradation of dye in the presence of all investigated samples was the most prominent in acidic conditions. Although this nanocomposite system ensured fast discoloration of dye solution, TOC values of water measured after sonophotocatalysis were not satisfactory because of PP degradation. Therefore, it is suggested to include TOC evaluation in each case study where different supports for TiO2 nanoparticles are used since these nanoparticles may guarantee the dye removal from solution but the stability of support could be problematic causing even more serious environmental impact.

7.
Rapid Commun Mass Spectrom ; 26(17): 2041-50, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22847704

ABSTRACT

RATIONALE: Nanoparticles as substrates for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have advantages over organic matrices, since they enable acquisition of spectra in the low-mass range. It has been previously shown that TiO(2) nanoparticles can be used as substrate for MALDI-TOF MS analysis of phospholipids and for other types of molecules, but none of them was applied to the analysis of transition metal complexes. METHODS: The MALDI-TOF mass spectra of potential anti-tumor drugs [AuCl(2)(bipy)]Cl, [PtCl(4)(bipy)], and [RuCl(2)(bipy)(2) ]Cl acquired with organic matrices have been compared with spectra acquired with colloidal titanium dioxide nanoparticles. Colloidal TiO(2) nanoparticles (NPs) with average diameter of 5 nm were synthesized and characterized by microscopy. For some experiments, the TiO(2) NPs were treated at 60 °C. Suspensions of matrix and the analyte were premixed, applied to the MALDI target and left at room temperature. Mass spectra were acquired with a 50-Hz pulsed nitrogen laser emitting at a wavelength of 337 nm. RESULTS: The MALDI spectra of transition metal complexes acquired with TiO(2) NPs exhibited somewhat lower sensitivity than those with organic matrices; on the other hand, they are characterized by significantly lower number of signals arising from the tested complexes than the organic matrices. Whereas adducts between organic matrices and the analytes were detectable in the spectra, this was not the case for the TiO(2)-assisted mass spectra. CONCLUSIONS: We have shown that colloidal TiO(2) NPs can be used as substrates for MALDI-TOF MS of transition metal complexes. Although the sensitivity of this approach in comparison with the use of organic matrices might still be a problem, the potential of the applications of NPs for the mass spectrometric characterization of transition metal complexes is clearly demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...