Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Gen Virol ; 104(9)2023 09.
Article in English | MEDLINE | ID: mdl-37698490

ABSTRACT

Arenaviridae is a family for ambisense RNA viruses with genomes of about 10.5 kb that infect mammals, snakes, and fish. The arenavirid genome consists of two or three single-stranded RNA segments and encodes a nucleoprotein (NP), a glycoprotein (GP) and a large (L) protein containing RNA-directed RNA polymerase (RdRP) domains; some arenavirids encode a zinc-binding protein (Z). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Arenaviridae, which is available at www.ictv.global/report/arenaviridae.


Subject(s)
Arenaviridae , Animals , Arenaviridae/genetics , Nucleoproteins/genetics , RNA , RNA-Dependent RNA Polymerase , Mammals
2.
Sci Rep ; 13(1): 3131, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823196

ABSTRACT

Remdesivir (GS-5734; VEKLURY) is a single diastereomer monophosphoramidate prodrug of an adenosine analog (GS-441524). Remdesivir is taken up by target cells and metabolized in multiple steps to form the active nucleoside triphosphate (GS-443902), which acts as a potent inhibitor of viral RNA-dependent RNA polymerases. Remdesivir and GS-441524 have antiviral activity against multiple RNA viruses. Here, we expand the evaluation of remdesivir's antiviral activity to members of the families Flaviviridae, Picornaviridae, Filoviridae, Orthomyxoviridae, and Hepadnaviridae. Using cell-based assays, we show that remdesivir can inhibit infection of flaviviruses (such as dengue 1-4, West Nile, yellow fever, Zika viruses), picornaviruses (such as enterovirus and rhinovirus), and filoviruses (such as various Ebola, Marburg, and Sudan virus isolates, including novel geographic isolates), but is ineffective or is significantly less effective against orthomyxoviruses (influenza A and B viruses), or hepadnaviruses B, D, and E. In addition, remdesivir shows no antagonistic effect when combined with favipiravir, another broadly acting antiviral nucleoside analog, and has minimal interaction with a panel of concomitant medications. Our data further support remdesivir as a broad-spectrum antiviral agent that has the potential to address multiple unmet medical needs, including those related to antiviral pandemic preparedness.


Subject(s)
Filoviridae , Hemorrhagic Fever, Ebola , Zika Virus Infection , Zika Virus , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Adenosine Monophosphate , Alanine , Hemorrhagic Fever, Ebola/drug therapy , Zika Virus Infection/drug therapy
3.
Viruses ; 13(10)2021 10 06.
Article in English | MEDLINE | ID: mdl-34696439

ABSTRACT

Biosafety, biosecurity, logistical, political, and technical considerations can delay or prevent the wide dissemination of source material containing viable virus from the geographic origin of an outbreak to laboratories involved in developing medical countermeasures (MCMs). However, once virus genome sequence information is available from clinical samples, reverse-genetics systems can be used to generate virus stocks de novo to initiate MCM development. In this study, we developed a reverse-genetics system for natural isolates of Ebola virus (EBOV) variants Makona, Tumba, and Ituri, which have been challenging to obtain. These systems were generated starting solely with in silico genome sequence information and have been used successfully to produce recombinant stocks of each of the viruses for use in MCM testing. The antiviral activity of MCMs targeting viral entry varied depending on the recombinant virus isolate used. Collectively, selecting and synthetically engineering emerging EBOV variants and demonstrating their efficacy against available MCMs will be crucial for answering pressing public health and biosecurity concerns during Ebola disease (EBOD) outbreaks.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/genetics , Reverse Genetics/methods , Cell Line , Disease Outbreaks , Ebolavirus/immunology , Ebolavirus/pathogenicity , Genome, Viral/genetics , Genotype , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Humans , Medical Countermeasures , Phenotype , Phylogeny
4.
Viruses ; 13(4)2021 04 07.
Article in English | MEDLINE | ID: mdl-33917085

ABSTRACT

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b', is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Subject(s)
Arterivirus/genetics , DNA, Complementary/genetics , Green Fluorescent Proteins/genetics , Open Reading Frames , RNA, Viral/genetics , Recombination, Genetic , Virus Replication/genetics , Animals , Arterivirus/physiology , Cell Line , Chiroptera , Hominidae , Humans , Plasmids/genetics , Proof of Concept Study , Rodentia
5.
PLoS One ; 16(1): e0245024, 2021.
Article in English | MEDLINE | ID: mdl-33411835

ABSTRACT

Ebola virus (EBOV), a member of the mononegaviral family Filoviridae, causes severe disease associated with high lethality in humans. Despite enormous progress in development of EBOV medical countermeasures, no anti-EBOV treatment has been approved. We designed an immunotoxin in which a single-chain variable region fragment of the EBOV glycoprotein-specific monoclonal antibody 6D8 was fused to the effector domains of Pseudomonas aeruginosa exotoxin A (PE38). This immunotoxin, 6D8-PE38, bound specifically to cells expressing EBOV glycoproteins. Importantly, 6D8-PE38 targeted EBOV-infected cells, as evidenced by inhibition of infectious EBOV production from infected cells, including primary human macrophages. The data presented here provide a proof of concept for immunotoxin-based targeted killing of infected cells as a potential antiviral intervention for Ebola virus disease.


Subject(s)
Ebolavirus/drug effects , Glycoproteins/immunology , Immunotoxins/pharmacology , Virus Replication/drug effects , Cell Line, Tumor , Ebolavirus/immunology , Humans , Viral Envelope Proteins/immunology
6.
ACS Med Chem Lett ; 11(11): 2139-2145, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33214821

ABSTRACT

Emerging infectious diseases like those caused by arboviruses such as Venezuelan equine encephalitis virus (VEEV) pose a serious threat to public health systems. Development of medical countermeasures against emerging infectious diseases are of utmost importance. In this work, an acrylate and vinyl sulfone-based chemical series was investigated as promising starting scaffolds against VEEV and as inhibitors of the cysteine protease domain of VEEV's nonstructural protein 2 (nsP2). Primary screen and dose response studies were performed to evaluate the potency and cytotoxicity of the compounds. The results provide structural insights into a new class of potent nonpeptidic covalent inhibitors of nsP2 cysteine protease represented by compound 11 (VEEV TrD, EC50 = 2.4 µM (HeLa), 1.6 µM (Vero E6)). These results may facilitate the evolution of the compounds into selective and broad-spectrum anti-alphaviral drug leads.

7.
bioRxiv ; 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32511350

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of human coronavirus disease 2019 (COVID-19), emerged in Wuhan, China in December 2019. The virus rapidly spread globally, resulting in a public-health crisis including more than one million cases and tens of thousands of deaths. Here, we describe the identification and evaluation of commercially available reagents and assays for the molecular detection of SARS-CoV-2 in infected formalin fixed paraffin embedded (FFPE) cell pellets. We identified a suitable rabbit polyclonal anti-SARS-CoV spike protein antibody and a mouse monoclonal anti-SARS-CoV nucleocapsid protein (NP) antibody for cross detection of the respective SARS-CoV-2 proteins by immunohistochemistry (IHC) and immunofluorescence assay (IFA). Next, we established RNAscope in situ hybridization (ISH) to detect SARS-CoV-2 RNA. Furthermore, we established a multiplex fluorescence ISH (mFISH) to detect positive-sense SARS-CoV-2 RNA and negative-sense SARS-CoV-2 RNA (a replicative intermediate indicating viral replication). Finally, we developed a dual staining assay using IHC and ISH to detect SARS-CoV-2 antigen and RNA in the same FFPE section. These reagents and assays will accelerate COVID-19 pathogenesis studies in humans and in COVID-19 animal models.

8.
Lancet Infect Dis ; 20(9): e231-e237, 2020 09.
Article in English | MEDLINE | ID: mdl-32563280

ABSTRACT

The PALM trial in the Democratic Republic of the Congo identified a statistically significant survival benefit for two monoclonal antibody-based therapeutics in the treatment of acute Ebola virus disease; however, substantial gaps remain in improving the outcomes of acute Ebola virus disease and for the survivors. Ongoing efforts are needed to develop more effective strategies, particularly for individuals with severe disease, for prevention and treatment of viral persistence in immune-privileged sites, for optimisation of post-exposure prophylaxis, and to increase therapeutic breadth. As antibody-based approaches are identified and advanced, promising small-molecule antivirals currently in clinical stage development should continue to be evaluated for filovirus diseases, with consideration of their added value in combination approaches with bundled supportive care, their penetration in tissues of interest, the absence of interaction with glycoprotein-based vaccines, and filoviral breadth.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Ebola Vaccines/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/therapy , Humans , Post-Exposure Prophylaxis
9.
JCI Insight ; 5(12)2020 06 18.
Article in English | MEDLINE | ID: mdl-32379723

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of human coronavirus disease 2019 (COVID-19), emerged in Wuhan, China, in December 2019. The virus rapidly spread globally, resulting in a public health crisis including almost 5 million cases and 323,256 deaths as of May 21, 2020. Here, we describe the identification and evaluation of commercially available reagents and assays for the molecular detection of SARS-CoV-2 in infected FFPE cell pellets. We identified a suitable rabbit polyclonal anti-SARS-CoV spike protein antibody and a mouse monoclonal anti-SARS-CoV nucleocapsid protein (NP) antibody for cross-detection of the respective SARS-CoV-2 proteins by IHC and immunofluorescence assay (IFA). Next, we established RNAscope in situ hybridization (ISH) to detect SARS-CoV-2 RNA. Furthermore, we established a multiplex FISH (mFISH) to detect positive-sense SARS-CoV-2 RNA and negative-sense SARS-CoV-2 RNA (a replicative intermediate indicating viral replication). Finally, we developed a dual staining assay using IHC and ISH to detect SARS-CoV-2 antigen and RNA in the same FFPE section. It is hoped that these reagents and assays will accelerate COVID-19 pathogenesis studies in humans and in COVID-19 animal models.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Animals , Antibodies, Viral/immunology , Antigens, Viral/isolation & purification , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Formaldehyde , Humans , Immunohistochemistry , In Situ Hybridization , Mice , Nucleocapsid Proteins/immunology , Pandemics , Paraffin Embedding/methods , Pathology, Molecular/methods , Pneumonia, Viral/pathology , RNA, Viral/isolation & purification , Rabbits , SARS-CoV-2 , Tissue Fixation/methods
10.
Cell Rep ; 29(8): 2175-2183.e4, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31747592

ABSTRACT

All viruses balance interactions between cellular machinery co-opted to support replication and host factors deployed to halt the infection. We use gene correlation analysis to perform an unbiased screen for host factors involved in influenza A virus (FLUAV) infection. Our screen identifies the cellular factor epidermal growth factor receptor pathway substrate 8 (EPS8) as the highest confidence pro-viral candidate. Knockout and overexpression of EPS8 confirm its importance in enhancing FLUAV infection and titers. Loss of EPS8 does not affect virion attachment, uptake, or fusion. Rather, our data show that EPS8 specifically functions during virion uncoating. EPS8 physically associates with incoming virion components, and subsequent nuclear import of released ribonucleoprotein complexes is significantly delayed in the absence of EPS8. Our study identifies EPS8 as a host factor important for uncoating, a crucial step of FLUAV infection during which the interface between the virus and host is still being discovered.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Influenza A virus/pathogenicity , Adaptor Proteins, Signal Transducing/genetics , Humans , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Virion/genetics , Virion/metabolism
11.
Antiviral Res ; 171: 104592, 2019 11.
Article in English | MEDLINE | ID: mdl-31473342

ABSTRACT

Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Marburgvirus/drug effects , Peptides/pharmacology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Cell Line , Cholesterol/chemistry , Disease Models, Animal , Hemorrhagic Fever, Ebola/virology , Marburg Virus Disease/virology , Mice , Microbial Sensitivity Tests , Models, Molecular , Peptides/chemistry , Protein Conformation , Structure-Activity Relationship
12.
J Gen Virol ; 100(8): 1200-1201, 2019 08.
Article in English | MEDLINE | ID: mdl-31192784

ABSTRACT

Members of the family Arenaviridae produce enveloped virions containing genomes consisting of two or three single-stranded RNA segments totalling about 10.5 kb. Arenaviruses can infect mammals, including humans and other primates, snakes, and fish. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arenaviridae, which is available at www.ictv.global/report/arenaviridae.


Subject(s)
Arenaviridae Infections/veterinary , Arenaviridae Infections/virology , Arenaviridae/classification , Arenaviridae/genetics , Animals , Arenaviridae/isolation & purification , Arenaviridae/ultrastructure , Fishes , Genome, Viral , Humans , Phylogeny , RNA, Viral/genetics , Reptiles , Viral Proteins/genetics
13.
Front Microbiol ; 10: 856, 2019.
Article in English | MEDLINE | ID: mdl-31105663

ABSTRACT

In 2012, the genome of a novel rhabdovirus, Bas-Congo virus (BASV), was discovered in the acute-phase serum of a Congolese patient with presumed viral hemorrhagic fever. In the absence of a replicating virus isolate, fulfilling Koch's postulates to determine whether BASV is indeed a human virus and/or pathogen has been impossible. However, experiments with vesiculoviral particles pseudotyped with Bas-Congo glycoprotein suggested that BASV particles can enter cells from multiple animals, including humans. In 2015, genomes of two related viruses, Ekpoma virus 1 (EKV-1) and Ekpoma virus 2 (EKV-2), were detected in human sera in Nigeria. Isolates could not be obtained. Phylogenetic analyses led to the classification of BASV, EKV-1, and EKV-2 in the same genus, Tibrovirus, together with five biting midge-borne rhabdoviruses [i.e., Beatrice Hill virus (BHV), Bivens Arm virus (BAV), Coastal Plains virus (CPV), Sweetwater Branch virus (SWBV), and Tibrogargan virus (TIBV)] not known to infect humans. Using individual recombinant vesiculoviruses expressing the glycoproteins of all eight known tibroviruses and more than 75 cell lines representing different animal species, we demonstrate that the glycoproteins of all tibroviruses can mediate vesiculovirus particle entry into human, bat, nonhuman primate, cotton rat, boa constrictor, and Asian tiger mosquito cells. Using four of five isolated authentic tibroviruses (i.e., BAV, CPV, SWBV, and TIBV), our experiments indicate that many cell types may be partially resistant to tibrovirus replication after virion cell entry. Consequently, experimental data solely obtained from experiments using tibrovirus surrogate systems (e.g., vesiculoviral pseudotypes, recombinant vesiculoviruses) cannot be used to predict whether BASV, or any other tibrovirus, infects humans.

14.
Syst Biol ; 68(5): 828-839, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30597118

ABSTRACT

The International Committee on Taxonomy of Viruses (ICTV) is tasked with classifying viruses into taxa (phyla to species) and devising taxon names. Virus names and virus name abbreviations are currently not within the ICTV's official remit and are not regulated by an official entity. Many scientists, medical/veterinary professionals, and regulatory agencies do not address evolutionary questions nor are they concerned with the hierarchical organization of the viral world, and therefore, have limited use for ICTV-devised taxa. Instead, these professionals look to the ICTV as an expert point source that provides the most current taxonomic affiliations of viruses of interests to facilitate document writing. These needs are currently unmet as an ICTV-supported, easily searchable database that includes all published virus names and abbreviations linked to their taxa is not available. In addition, in stark contrast to other biological taxonomic frameworks, virus taxonomy currently permits individual species to have several members. Consequently, confusion emerges among those who are not aware of the difference between taxa and viruses, and because certain well-known viruses cannot be located in ICTV publications or be linked to their species. In addition, the number of duplicate names and abbreviations has increased dramatically in the literature. To solve this conundrum, the ICTV could mandate listing all viruses of established species and all reported unclassified viruses in forthcoming online ICTV Reports and create a searchable webpage using this information. The International Union of Microbiology Societies could also consider changing the mandate of the ICTV to include the nomenclature of all viruses in addition to taxon considerations. With such a mandate expansion, official virus names and virus name abbreviations could be catalogued and virus nomenclature could be standardized. As a result, the ICTV would become an even more useful resource for all stakeholders in virology.


Subject(s)
Classification/methods , Virology/methods , Viruses/classification , International Cooperation , Virology/standards , Virology/trends
15.
Virus Evol ; 4(2): vey034, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30524754

ABSTRACT

Ebola virus (EBOV) disease is a viral hemorrhagic fever with a high case-fatality rate in humans. This disease is caused by four members of the filoviral genus Ebolavirus, including EBOV. The natural hosts reservoirs of ebolaviruses remain to be identified. Glycoprotein 2 of reptarenaviruses, known to infect only boa constrictors and pythons, is similar in sequence and structure to ebolaviral glycoprotein 2, suggesting that EBOV may be able to infect reptilian cells. Therefore, we serially passaged EBOV and a distantly related filovirus, Marburg virus (MARV), in boa constrictor JK cells and characterized viral infection/replication and mutational frequency by confocal imaging and sequencing. We observed that EBOV efficiently infected and replicated in JK cells, but MARV did not. In contrast to most cell lines, EBOV-infected JK cells did not result in an obvious cytopathic effect. Surprisingly, genomic characterization of serial-passaged EBOV in JK cells revealed that genomic adaptation was not required for infection. Deep sequencing coverage (>10,000×) demonstrated the existence of only a single nonsynonymous variant (EBOV glycoprotein precursor pre-GP T544I) of unknown significance within the viral population that exhibited a shift in frequency of at least 10 per cent over six serial passages. In summary, we present the first reptilian cell line that replicates a filovirus at high titers, and for the first time demonstrate a filovirus genus-specific restriction to MARV in a cell line. Our data suggest the possibility that there may be differences between the natural host spectra of ebolaviruses and marburgviruses.

16.
Viruses ; 10(11)2018 11 20.
Article in English | MEDLINE | ID: mdl-30463334

ABSTRACT

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000⁻300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


Subject(s)
Drug Evaluation, Preclinical/methods , Genes, Reporter , Green Fluorescent Proteins/analysis , Lassa virus/growth & development , Luminescent Agents/analysis , Neutralization Tests/methods , Staining and Labeling/methods , Animals , Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , Chlorocebus aethiops , Fluorometry/methods , Genomic Instability , Green Fluorescent Proteins/genetics , Lassa virus/drug effects , Lassa virus/genetics , Lassa virus/immunology , Reverse Genetics , Ribavirin/pharmacology , Vero Cells
17.
Cell Host Microbe ; 24(3): 405-416.e3, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30173956

ABSTRACT

Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus (MARV) disease and recently caused flare-ups of Ebola virus disease in the 2013-2016 outbreak. How filoviruses establish testicular persistence and are shed in semen remain unknown. We discovered that persistent MARV infection of seminiferous tubules, an immune-privileged site that harbors sperm production, is a relatively common event in crab-eating macaques that survived infection after antiviral treatment. Persistence triggers severe testicular damage, including spermatogenic cell depletion and inflammatory cell invasion. MARV mainly persists in Sertoli cells, leading to breakdown of the blood-testis barrier formed by inter-Sertoli cell tight junctions. This disruption is accompanied by local infiltration of immunosuppressive CD4+Foxp3+ regulatory T cells. Our study elucidates cellular events associated with testicular persistence that may promote sexual transmission of filoviruses and suggests that targeting immunosuppression may be warranted to clear filovirus persistence in damaged immune-privileged sites.


Subject(s)
Marburg Virus Disease/virology , Marburgvirus/physiology , Primate Diseases/virology , Testis/virology , Animals , Macaca , Male , Marburg Virus Disease/immunology , Marburg Virus Disease/metabolism , Primate Diseases/immunology , Primate Diseases/metabolism , Sertoli Cells/metabolism , Sertoli Cells/virology , Survivors , T-Lymphocytes, Regulatory/immunology , Tight Junctions/metabolism , Tight Junctions/virology
18.
PLoS Pathog ; 14(7): e1007125, 2018 07.
Article in English | MEDLINE | ID: mdl-30001425

ABSTRACT

Several arenaviruses cause hemorrhagic fever (HF) diseases that are associated with high morbidity and mortality in humans. Accordingly, HF arenaviruses have been listed as top-priority emerging diseases for which countermeasures are urgently needed. Because arenavirus nucleoprotein (NP) plays critical roles in both virus multiplication and immune-evasion, we used an unbiased proteomic approach to identify NP-interacting proteins in human cells. DDX3, a DEAD-box ATP-dependent-RNA-helicase, interacted with NP in both NP-transfected and virus-infected cells. Importantly, DDX3 deficiency compromised the propagation of both Old and New World arenaviruses, including the HF arenaviruses Lassa and Junin viruses. The DDX3 role in promoting arenavirus multiplication associated with both a previously un-recognized DDX3 inhibitory role in type I interferon production in arenavirus infected cells and a positive DDX3 effect on arenavirus RNA synthesis that was dependent on its ATPase and Helicase activities. Our results uncover novel mechanisms used by arenaviruses to exploit the host machinery and subvert immunity, singling out DDX3 as a potential host target for developing new therapies against highly pathogenic arenaviruses.


Subject(s)
Arenaviridae Infections/metabolism , DEAD-box RNA Helicases/metabolism , Host-Pathogen Interactions/physiology , Immune Evasion/immunology , Virus Replication/physiology , Arenaviridae Infections/immunology , Arenavirus , Cell Line , DEAD-box RNA Helicases/immunology , Humans , Interferon Type I/biosynthesis , Interferon Type I/immunology , Viral Core Proteins/immunology , Viral Core Proteins/metabolism
19.
Methods Mol Biol ; 1604: 393-403, 2018.
Article in English | MEDLINE | ID: mdl-28986850

ABSTRACT

The majority of viruses causing hemorrhagic fever in humans are Risk Group 3 or 4 pathogens and, therefore, can only be handled in biosafety level 3 or 4 (BSL-3/4) containment laboratories. The restricted number of such laboratories, the substantial financial requirements to maintain them, and safety concerns for the laboratory workers pose formidable challenges for rapid medical countermeasure discovery and evaluation. BSL-2 surrogate systems are a less challenging, cheap, and fast alternative to the use of live high-consequence viruses for dissecting and targeting individual steps of viral lifecycles with a diminished threat to the laboratory worker. Typical surrogate systems are virion-like particles (VLPs), transcriptionally active ("infectious") VLPs, minigenome systems, recombinant heterotypic viruses encoding proteins of target viruses, and vesiculoviral or retroviral pseudotype systems. Here, we outline the use of retroviral pseudotypes for identification of antivirals against BSL-4 pathogens.


Subject(s)
Hemorrhagic Fevers, Viral/virology , Antiviral Agents/therapeutic use , Hemorrhagic Fevers, Viral/drug therapy , Humans , Retroviridae/drug effects , Retroviridae/genetics , Virus Internalization/drug effects
20.
Nat Microbiol ; 2: 17113, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28715405

ABSTRACT

Ebola virus (EBOV) persistence in asymptomatic humans and Ebola virus disease (EVD) sequelae have emerged as significant public health concerns since the 2013-2016 EVD outbreak in Western Africa. Until now, studying how EBOV disseminates into and persists in immune-privileged sites was impossible due to the absence of a suitable animal model. Here, we detect persistent EBOV replication coinciding with systematic inflammatory responses in otherwise asymptomatic rhesus monkeys that had survived infection in the absence of or after treatment with candidate medical countermeasures. We document progressive EBOV dissemination into the eyes, brain and testes through vascular structures, similar to observations in humans. We identify CD68+ cells (macrophages/monocytes) as the cryptic EBOV reservoir cells in the vitreous humour and its immediately adjacent tissue, in the tubular lumina of the epididymides, and in foci of histiocytic inflammation in the brain, but not in organs typically affected during acute infection. In conclusion, our data suggest that persistent EBOV infection in rhesus monkeys could serve as a model for persistent EBOV infection in humans, and we demonstrate that promising candidate medical countermeasures may not completely clear EBOV infection. A rhesus monkey model may lay the foundation to study EVD sequelae and to develop therapies to abolish EBOV persistence.


Subject(s)
Asymptomatic Infections , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/virology , Africa, Western , Animals , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Brain/cytology , Brain/virology , Disease Models, Animal , Ebolavirus/isolation & purification , Epididymis/cytology , Epididymis/virology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/pathology , Humans , Macaca mulatta , Macrophages/virology , Male , Virus Replication , Vitreous Body/cytology , Vitreous Body/immunology , Vitreous Body/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...