Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9293, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286551

ABSTRACT

In this work, a coupled Monte Carlo Genetic Algorithm (MCGA) approach is used to optimize a gas phase uranium oxide reaction mechanism based on plasma flow reactor (PFR) measurements. The PFR produces a steady Ar plasma containing U, O, H, and N species with high temperature regions (3000-5000 K) relevant to observing UO formation via optical emission spectroscopy. A global kinetic treatment is used to model the chemical evolution in the PFR and to produce synthetic emission signals for direct comparison with experiments. The parameter space of a uranium oxide reaction mechanism is then explored via Monte Carlo sampling using objective functions to quantify the model-experiment agreement. The Monte Carlo results are subsequently refined using a genetic algorithm to obtain an experimentally corroborated set of reaction pathways and rate coefficients. Out of 12 reaction channels targeted for optimization, four channels are found to be well constrained across all optimization runs while another three channels are constrained in select cases. The optimized channels highlight the importance of the OH radical in oxidizing uranium in the PFR. This study comprises a first step toward producing a comprehensive experimentally validated reaction mechanism for gas phase uranium molecular species formation.

2.
Sci Rep ; 12(1): 4030, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35256710

ABSTRACT

In order to model the fate and transport of particles following a nuclear explosion, there must first be an understanding of individual physical and chemical processes that affect particle formation. One interaction pertinent to fireball chemistry and resultant debris formation is that between uranium and oxygen. In this study, we use laser ablation of uranium metal in different concentrations of oxygen gas, either 16O2 or 18O2, to determine the influence of oxygen on rapidly cooling uranium. Analysis of recovered particulates using infrared absorption and Raman spectroscopies indicate that the micrometer-sized particulates are predominantly amorphous UOx (am-UOx, where 3 ≤ x ≤ 4) and UO2 after ablation in 1 atm of pure O2 and a 1% O2/Ar mixture, respectively. Energy dispersive X-ray spectroscopy (EDS) of particulates formed in pure O2 suggest an O/U ratio of ~ 3.7, consistent with the vibrational spectroscopy analysis. Both am-UOx and UO2 particulates convert to α-U3O8 when heated. Lastly, experiments performed in 18O2 environments show the formation of 18O-substituted uranium oxides; vibrational frequencies for am-U18Ox are reported for the first time. When compared to literature, this work shows that cooling timescales can affect the structural composition of uranium oxides (i.e., crystalline vs. amorphous). This indicator can be used in current models of nuclear explosions to improve our predicative capabilities of chemical speciation.

3.
Anal Chem ; 92(9): 6437-6445, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32233449

ABSTRACT

The predictive models that describe the fate and transport of radioactive materials in the atmosphere following a nuclear incident (explosion or reactor accident) assume that uranium-bearing particulates would attain chemical equilibrium during vapor condensation. In this study, we show that kinetically driven processes in a system of rapidly decreasing temperature can result in substantial deviations from chemical equilibrium. This can cause uranium to condense out in oxidation states (e.g., UO3 vs UO2) that have different vapor pressures, significantly affecting uranium transport. To demonstrate this, we synthesized uranium oxide nanoparticles using a flow reactor under controlled conditions of temperature, pressure, and oxygen concentration. The atomized chemical reactants passing through an inductively coupled plasma cool from ∼5000 to 1000 K within milliseconds and form nanoparticles inside a flow reactor. The ex situ analysis of particulates by transmission electron microscopy revealed 2-10 nm crystallites of fcc-UO2 or α-UO3 depending on the amount of oxygen in the system. α-UO3 is the least thermodynamically preferred polymorph of UO3. The absence of stable uranium oxides with intermediate stoichiometries (e.g., U3O8) and sensitivity of the uranium oxidation states to local redox conditions highlight the importance of in situ measurements at high temperatures. Therefore, we developed a laser-based diagnostic to detect uranium oxide particles as they are formed inside the flow reactor. Our in situ measurements allowed us to quantify the changes in the number densities of the uranium oxide nanoparticles (e.g., UO3) as a function of oxygen gas concentration. Our results indicate that uranium can prefer to be in metastable crystal forms (i.e., α-UO3) that have higher vapor pressures than the refractory form (i.e., UO2) depending on the oxygen abundance in the surrounding environment. This demonstrates that the equilibrium processes may not dominate during rapid condensation processes, and thus kinetic models are required to fully describe uranium transport subsequent to nuclear incidents.

4.
Sci Rep ; 8(1): 10451, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29992989

ABSTRACT

We use a recently developed plasma-flow reactor to experimentally investigate the formation of oxide nanoparticles from gas phase metal atoms during oxidation, homogeneous nucleation, condensation, and agglomeration processes. Gas phase uranium, aluminum, and iron atoms were cooled from 5000 K to 1000 K over short-time scales (∆t < 30 ms) at atmospheric pressures in the presence of excess oxygen. In-situ emission spectroscopy is used to measure the variation in monoxide/atomic emission intensity ratios as a function of temperature and oxygen fugacity. Condensed oxide nanoparticles are collected inside the reactor for ex-situ analyses using scanning and transmission electron microscopy (SEM, TEM) to determine their structural compositions and sizes. A chemical kinetics model is also developed to describe the gas phase reactions of iron and aluminum metals. The resulting sizes and forms of the crystalline nanoparticles (FeO-wustite, eta-Al2O3, UO2, and alpha-UO3) depend on the thermodynamic properties, kinetically-limited gas phase chemical reactions, and local redox conditions. This work shows the nucleation and growth of metal oxide particles in rapidly-cooling gas is closely coupled to the kinetically-controlled chemical pathways for vapor-phase oxide formation.

5.
J Phys Chem A ; 122(6): 1584-1591, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29388772

ABSTRACT

High-temperature chemistry in laser ablation plumes leads to vapor-phase speciation, which can induce chemical fractionation during condensation. Using emission spectroscopy acquired after ablation of a SrZrO3 target, we have experimentally observed the formation of multiple molecular species (ZrO and SrO) as a function of time as the laser ablation plume evolves. Although the stable oxides SrO and ZrO2 are both refractory, we observed emission from the ZrO intermediate at earlier times than SrO. We deduced the time-scale of oxygen entrainment into the laser ablation plume using an 18O2 environment by observing the in-growth of Zr18O in the emission spectra relative to Zr16O, which was formed by reaction of Zr with 16O from the target itself. Using temporally resolved plume-imaging, we determined that ZrO formed more readily at early times, volumetrically in the plume, while SrO formed later in time, around the periphery. Using a simple temperature-dependent reaction model, we have illustrated that the formation sequence of these oxides subsequent to ablation is predictable to first order.

6.
Rev Sci Instrum ; 88(9): 093506, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28964176

ABSTRACT

We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

7.
J Chem Phys ; 142(21): 214506, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049507

ABSTRACT

Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.

8.
J Phys Chem A ; 118(38): 8695-700, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25226115

ABSTRACT

Efforts to synthesize, characterize, and recover novel polynitrogen energetic materials have driven attempts to subject high nitrogen content precursor materials (in particular, metal and nonmetal azides) to elevated pressures. Here we present a combined theoretical and experimental study of the high-pressure behavior of ammonium azide (NH4N3). Using density functional theory, we have considered the relative thermodynamic stability of the material with respect to two other crystal phases, namely, trans-tetrazene (TTZ), and also a novel hydronitrogen solid (HNS) of the form (NH)4, that was recently predicted to become relatively stable under high pressure. Experimentally, we have measured the Raman spectra of NH4N3 up to 71 GPa at room temperature. Our calculations demonstrate that the HNS becomes stable only at pressures much higher (89.4 GPa) than previously predicted (36 GPa). Our Raman spectra are consistent with previous reports up to lower pressures and at higher pressures, while some additional subtle behavior is observed (e.g., mode splitting), there is again no evidence of a phase transition to either TTZ or the HNS.

9.
Opt Express ; 14(12): 5313-28, 2006 Jun 12.
Article in English | MEDLINE | ID: mdl-19516698

ABSTRACT

We investigate the interaction of high-power nanosecond-laser pulses at different frequencies with damage initiating defect structures in bulk KD(x)H(2-x)PO(4) (DKDP) crystals in order to enhance the understanding of a) the nature and behavior of the defects involved and b) the laser-induced defect reactions leading to improvement to the material performance. The experimental results indicate that there is more than one type of defect structure giving rise to damage initiation over two different spectral ranges. Moreover, within one set of defects we observe two different damage behaviors depending on the pre-irradiation parameters, pointing to more than one defect reaction pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...