Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; : e2400261, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943449

ABSTRACT

Researchers are encountering challenges in addressing the issue of cancer cells becoming unresponsive to various chemotherapy treatments due to drug resistance. This study was designed to study the influence of antioxidant resveratrol (RSV) to sensitize resistant breast cancer (BC) cells toward tamoxifen (TAM). The cytotoxic effects of RSV and TAM against TAM-resistant LCC2 cells and their parental michigan cancer foundation-7 BC cells were determined by sulphorhodamine B assay. Further, the expression levels of multidrug resistance (MDR) genes including ABCB1, ABCC2, ABCG2, and MRP1 using quantitative polymerase chain reaction, apoptosis induction, and reactive oxygen species (ROS) content using flow cytometry were evaluated in either LCC2 cells treated with RSV, TAM, or their combination. The obtained results showed that resistant cells have a magnificent level of MDR genes. This elevated expression dramatically lowered upon receiving the combined therapy of RSV and TAM. Additionally, our work assessed the possible role of RSV in modulating the expression of MDR genes by controlling the expression of certain microRNAs (miRNAs) that target ATP-binding cassette (ABC) transporters. According to the obtained data, the TAM and RSV combination increased the expression of tumor inhibitor miRNAs such miR-10b-3p, miR-195-3p, and miR-223-3p, which made LCC2 cells more sensitive to TAM. Furthermore, this combination showed an elevation in apoptotic levels and total ROS content. The combination between RSV and TAM could be a functional therapy in the fight against TAM-resistant BC cells via modulating miRNA and ABC transporters.

2.
Toxicol Res (Camb) ; 13(2): tfae050, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38559757

ABSTRACT

Background: Ehrlich ascites carcinoma (EAC) is a rapidly growing and undifferentiated tumor that can prompt oxidative stress and liver toxicity, whereas chitosan and Grifola Frondosa have widely recognized biological qualities. Therefore, our study designed to assess the potential ameliorative ability of chitosan nanoparticles (CS NPs) and Grifola Frondosa nanoparticles (GF-loaded casein NPs) on EAC-induced hepatic injury in mice. Methods: A total of 60 female albino mice were segregated into 6 groups (10 mice each), G1, control group; G2, CS NPs group; G3, GF-loaded casein NPs group; G4, EAC group; G5, EAC treated with CS NPs; G6, EAC treated with GF-loaded casein NPs. Results: According to the findings, EAC considerably increased serum activities of ALT, AST, ALP as well as LDL, cholesterol, and triglycerides levels coincided with marked decrease in albumin and total protein content in liver tissue. At the same time, it drastically lowered GSH levels and catalase activity while significantly elevating MDA levels. In addition, EAC caused DNA damage and apoptosis by decreasing Bcl-2 while increasing p53 expressions. However, either CS NPs or GF-loaded casein NPs therapy improved liver architecture and functioning, increased antioxidant parameters, and prevented hepatocyte death in EAC mice. Conclusions: Our findings concluded that CS NPs and GF-loaded casein NPs have insulating functions against EAC-induced hepatic damage in mice.

3.
Sci Rep ; 14(1): 2824, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38310190

ABSTRACT

Breast cancer therapy options are limited due to its late diagnosis and poor prognosis. Doxorubicin is the fundamental therapy approach for this disease. Because chemotherapy has numerous adverse effects, the scope of the existing research was to appraise the synergetic effect of doxorubicin and naringin and explore the underlying mechanism. The cytotoxicity of doxorubicin and naringin on MCF-7 was monitored. Furthermore, the expression of STAT3 and JAK1 as well as the apoptotic and metastatic related genes (Bax, Bcl-2, Survivin, and VEGF) were conducted by immunoblotting assay and qRT-PCR. In addition, a wound healing test was utilized to appraise the migration and metastasis of MCF-7. Our results revealed that naringin and doxorubicin had a synergetic inhibitory influence on MCF-7 cells growth and migration. The synergetic action of doxorubicin and naringin effectively hindered the expression of STAT3, JAK1, Bcl-2, Survivin, and VEGF, with a boost in the level of Bax compared to cells treated with either doxorubicin or naringin. In conclusion, our findings imply that combining doxorubicin with naringin may be a favorable strategy for inhibiting the growth of breast cancer.


Subject(s)
Breast Neoplasms , Flavanones , Humans , Female , Breast Neoplasms/pathology , Survivin/metabolism , bcl-2-Associated X Protein , Vascular Endothelial Growth Factor A/pharmacology , Apoptosis , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Cell Line, Tumor
4.
Environ Toxicol ; 39(1): 388-397, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37782692

ABSTRACT

Although curcumin possesses anti-inflammatory, antioxidant, and cytoprotective qualities, its low absorption limits its medicinal uses. Before examining how curcumin influenced rats' liver fibrosis when thioacetamide (TAA) was produced, the current study employed nanoparticles (NPs) to improve curcumin bioavailability. Sixty mature rats were separated into six groups (Group 1, control; Group 2, curcumin; Group 3, curcumin nanoparticles; Group 4, TAA; Group 5, TAA + curcumin; Group 6, TAA + curcumin NPs). TAA administration caused considerable increases in serum liver enzymes associated with a remarkable depletion in the levels of albumin and total protein relative to the control. In addition, a significant elevation in malonaldehyde (MDA) level with a significant depletion in the antioxidant enzymes activity was detected. Also, TAA had a significant effect on the inflammation markers represented by the elevation in tumor necrosis factor (TNFα) and DNA damage. Administration of curcumin or curcumin NPs in TAA-intoxicated rats significantly (p < .001, p < .0001) alleviates liver injury by correcting antioxidant status, inflammatory markers, and oxidative stress. The results of comparing TAA-intoxicated rats treated with curcumin NPs to TAA-intoxicated rats treated with bulk curcumin revealed that the ameliorative effect of nanocurcumin was stronger. These observations concluded that nanoparticle formulation can increase curcumin bioavailability and solubility, enhancing its antioxidant and anti-inflammatory efficiency, resulting in greater potential against thioacetamide-induced hepatotoxicity in rats.


Subject(s)
Curcumin , Nanoparticles , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Thioacetamide/toxicity , Liver , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Nanoparticles/therapeutic use
5.
Article in English | MEDLINE | ID: mdl-33573579

ABSTRACT

The article has been withdrawn on the recommendation of the Editor-in-Chief of the journal Anti-Cancer Agents in Medicinal Chemistry due to some inconsistencies in the content of the article. Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policiesmain.php Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

6.
Biomolecules ; 11(1)2021 01 13.
Article in English | MEDLINE | ID: mdl-33451048

ABSTRACT

Among seven homologs of cytochrome b561 in a model organism C. elegans, Cecytb-2 was confirmed to be expressed in digestive organs and was considered as a homolog of human Dcytb functioning as a ferric reductase. Cecytb-2 protein was expressed in Pichia pastoris cells, purified, and reconstituted into a phospholipid bilayer nanodisc. The reconstituted Cecytb-2 in nanodisc environments was extremely stable and more reducible with ascorbate than in a detergent-micelle state. We confirmed the ferric reductase activity of Cecytb-2 by analyzing the oxidation of ferrous heme upon addition of ferric substrate under anaerobic conditions, where clear and saturable dependencies on the substrate concentrations following the Michaelis-Menten equation were observed. Further, we confirmed that the ferric substrate was converted to a ferrous state by using a nitroso-PSAP assay. Importantly, we observed that the ferric reductase activity of Cecytb-2 became enhanced in the phospholipid bilayer nanodisc.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , FMN Reductase/metabolism , L-Lactate Dehydrogenase (Cytochrome)/metabolism , Lipid Bilayers/metabolism , Nanoparticles/chemistry , Phospholipids/metabolism , Animals , Caenorhabditis elegans Proteins/isolation & purification , Detergents/pharmacology , Dynamic Light Scattering , Glucosides/pharmacology , L-Lactate Dehydrogenase (Cytochrome)/isolation & purification , Micelles , Particle Size , Schiff Bases
SELECTION OF CITATIONS
SEARCH DETAIL
...