Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 593: 120143, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33279712

ABSTRACT

The development of a scaffold matrix that can inhibit bacterial infection and promote wound healing simultaneously is an essential demand to improve the health care system. Hydroxyapatite (HAP) doped with different concentrations of silver ions (Ag+) were incorporated into electrospun nanofibrous scaffolds of polycaprolactone (PCL) using the electrospinning technique. The formed phase was identified using XRD, while the morphological and roughness behavior were investigated using FESEM. It was shown that scaffolds were configured in randomly distributed nanofibers with diameters around of 0.19-0.40, 0.31-0.54, 1.36, 0.122-0.429 µm for 0.0Ag-HAP@PCL, 0.2Ag-HAP@PCL, 0.6Ag-HAP@PCL, and 0.8Ag-HAP@PCL, respectively. Moreover, the maximum roughness peak height increased significantly from 179 to 284 nm, with the lowest and highest contributions of Ag. The mechanical properties were examined and displayed that the tensile strength increased from 3.11 ± 0.21 MPa to its highest value at 3.57 ± 0.31 MPa for 0.4Ag-HAP@PCL. On the other hand, the cell viability also was enhanced with the addition of Ag and improved from 97.1 ± 4.6% to be around 102.3 ± 3.1% at the highest contribution of Ag. The antibacterial activity was determined, and the highest imbibition zones were achieved at the highest Ag dopant to be 12.5 ± 1.1 mm and 11.4 ± 1.5 mm against E. coli and S. aureus. The in vitro cell proliferation was observed through human fibroblasts cell lone (HFB4) and illustrated that cells were able to grow and spread not only on the fibers' surface but also, they were spreading and adhered through the deep pores.


Subject(s)
Durapatite , Nanofibers , Anti-Bacterial Agents/pharmacology , Bandages , Cell Adhesion , Escherichia coli , Humans , Polyesters , Silver , Staphylococcus aureus , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...