Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 93, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321418

ABSTRACT

BACKGROUND: Acacia species are economically significant as medicinal plants that have been utilized since ancient times. Acacia modesta has been reported to possess potent antibacterial and antioxidant properties, but its growth rate is slow. In this study, we hypothesized that inducing callus in vitro from A. modesta could enhance the production of antibacterial and antioxidant secondary metabolites, thereby circumventing the issues of slow growth and excessive harvesting of the plant. RESULTS: The callus was induced from axillary buds on MS medium supplemented with 1 mg/L of 2,4-D and 1 mg/L of BAP. The secondary metabolites, volatile compounds, antibacterial activity, and antioxidant activity of the callus and parent plant leaf extracts were evaluated. The results revealed that the content of phenolics and flavonoids, the number of volatile compounds, and the antibacterial and antioxidant activities of the callus extract were significantly enhanced (P ≤ 0.05) compared to the leaf extract. The antibacterial and antioxidant effects were strongly correlated with the total phenolic and flavonoid content in the extracts. CONCLUSIONS: Our findings suggest that in vitro callus culture increases the production of phenolics, flavonoids, and volatile compounds. This subsequently enhances the antibacterial and antioxidant properties of A. modesta.


Subject(s)
Acacia , Antioxidants , Antioxidants/metabolism , Acacia/metabolism , Anti-Bacterial Agents/pharmacology , Plant Extracts , Flavonoids/metabolism , Phenols/metabolism
2.
Plants (Basel) ; 10(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34961183

ABSTRACT

The present study analyses plant diversity and evaluates the relationship between edaphic variables and the distribution and grouping of plant species in the Aswan Reservoir area, South Egypt. The dominant families were Fabaceae, Poaceae, and Asteraceae, forming 38.82% of the total flora recorded. The main bulk of the flora recorded (50.59%) belonged to the cosmopolitan, neotropical, pantropical, and palaeotropical chorotypes. A TWINSPAN analysis produced 10 vegetation clusters. Inundation levels showed a high correlation with species richness. The seasonally inundated area in Bute El-Hasaya and Maezana Belal (cluster V) had the highest species richness (36.50), while the lowest species richness (4.50) was in the shoreline of Philae, Awad, and Heisa islands (cluster IX). The DCA ordination depicted the environmental gradient expressed by the cluster analysis, and the resulting vegetation groups represented a distinct microhabitat. The CCA ordination indicates that the separation of vegetation group (A) along the axis was affected by the concentration of K, Mg, and CO3, and the vegetation group (B) was significantly associated with the total dissolved salts and the concentration of Cl. Moreover, the vegetation group (C) correlated significantly with pH, electrical conductivity, organic matter content, and SO3, HCO3, PO4, Na, and Ca concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...