Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885554

ABSTRACT

Recycled concrete aggregate (RCA) is a promising substitute for natural aggregates and the reuse of this material can benefit construction projects both economically and environmentally. RCA has received great attention in recent years in the form of aggregate as well as a geotechnical material of sand size. Next to RCA, another recycled material, which reduces the waste volume and is a part of the present challenges in civil engineering, is tire waste. Despite the good engineering properties of recycled tire waste (RTW), its use is still limited, even after almost 30 years since they were first introduced. To broaden the applicability of reused concrete and rubber, a further understanding of their properties and engineering behavior is required. For this reason, the main subject of this paper is composite materials that consist of anthropogenic soil recycled concrete aggregate (RCA) and crushed pieces of recycled tire waste (RTW). In this study, a series of isotropic consolidated drained triaxial tests were undertaken to characterize the shear strength of eight mixtures of variable grain-size distribution, rubber inclusion (RC), and fine fraction (FF) content. The results show that the introduction of rubber waste leads to changes in the strength parameters of the tested mixtures. Improvements in RCA shear strength were observed, the largest for the mixture M7 with 10% of recycled tire waste. Similarly, the effect of fine fraction content on the angle of internal friction and cohesion was found. Dilation characteristics were observed in all analyzed composites. Based on the results of all tests performed, including physical, geometric, chemical, and mechanical properties of the created composites, it can be stated that the samples would meet local road authority requirements for sub-base applications.

2.
Materials (Basel) ; 14(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832364

ABSTRACT

One of the fundamental techniques for road subgrades is soil stabilization. Considering the high emission of carbon dioxide during the production of binders, novel techniques to reduce the binder are being studied. Thus, we investigated dispersed reinforcement in stabilized soils. A study was conducted to determine the ultrasonic pulse velocity in nine mixtures of soil, cement, and polypropylene fibers and then correlate the results with other destructive tests. The results show a decrease in wave velocity in mixes with fiber addition by up to 18.5%. The result is dependent on the curing time and whether the samples were stored in a water tank. Immersion in water increases the obtained results by about 6.3%. Based on the analysis, for mixtures with fibers, boundary velocities of waves above which lower values of modulus of elasticity were obtained were determined. Depending on the mix and the module analyzed, the limits range from 2194 m/s to 2498 m/s.

3.
Materials (Basel) ; 14(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34683619

ABSTRACT

The increasing demand for building materials in the road industry creates interest for a new source of high-quality aggregates. In order to conserve natural resources, more attention is focused on anthropogenic soils and industrial solid wastes. For the successful application of these types of soil, a series of geotechnical and environmental tests have to be conducted. A potential hazard in the reuse of wastes from thermal degradation in the construction industry, particularly in reinforced concrete (RC) construction, is the migration of heavy metals into the groundwater environment. In this article, a geotechnical assessment of blast furnace slag (BFS) properties is presented. We conducted a series of CBR, and oedometric tests to evaluate the feasibility of BFS application in earth construction. The oedometric test results show acceptable compression characteristics which are in the range of natural aggregates. The CBR shows that this material may be used as a pavement subbase. We also noticed the preconsolidation pressure phenomenon in both Proctor and vibro-compacted soil during the oedometric test. The compression index and recompression index value show that the compression characteristics are close to those of dense sand. Based on the results described in the article, blast furnace slag is a candidate for technological application and can become one of the elements of sustainable development by contributing to a reduction in the negative environmental impact of production and use of building materials.

4.
Molecules ; 26(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069499

ABSTRACT

In this study, straetlingite-based sorbents were used for NH4+ ion removal from a synthetic aqueous solution and from the wastewater of an open recirculation African catfish farming system. This study was performed using column experiments with four different filtration rates (2, 5, 10, and 15 mL/min). It was determined that breakthrough points and sorption capacity could be affected by several parameters such as flow rate and mineral composition of sorption materials. In the synthetic aqueous solution, NH4+ removal reached the highest sorption capacity, i.e., 0.341 mg/g with the S30 sorbent at a filtration rate of 10 mL/min and an initial concentration of 10 mg/L of NH4+ ions. It is important to emphasize that, in this case, the Ce/C0 ratio of 0.9 was not reached after 420 min of sorption. It was also determined that the NH4+ sorption capacity was influenced by phosphorus. In the wastewater, the NH4+ sorption capacity was almost seven times lower than that in the synthetic aqueous solution. However, it should be highlighted that the P sorption capacity reached 0.512 mg/g. According to these results, it can be concluded that straetlingite-based sorbents can be used for NH4+ ion removal from a synthetic aqueous solution, as well as for both NH4+ and P removal from industrial wastewater. In the wastewater, a significantly higher sorption capacity of the investigated sorbents was detected for P than for NH4+.

5.
Molecules ; 25(13)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635331

ABSTRACT

This study aims to investigate the effects of ammonium-bearing zeolitic waste (FCC) on alkali-activated biomass bottom ash (BBA). FCC was obtained from the oil-cracking process in petroleum plants. In this study, two types of production waste were used: biomass bottom ash and ammonium-bearing zeolitic waste. These binary alkali-activated FCC/BBA blends were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) methods. The compressive strength of the hardened samples was evaluated. The results show that the samples made from alkali-activated BBA biomass bottom ash had low (8.5 MPa) compressive strength, which could be explained with low reactive BBA and insufficient quantities of silicon and aluminum compounds. The reactivity of BBA was improved with incorporating zeolitic waste as an aluminosilicate material. This zeolitic waste was first used for ammonium sorption; then, it was incorporated in alkali-activated samples. Additional amounts of hydrated products formed, such as calcium silicate hydrate, calcium aluminum silicate hydrate and calcium sodium aluminum silicate hydrate. The silicon and aluminum compound, which varied in zeolitic waste, changed the mineral composition and microstructure of alkali-activated binder systems. NH4Cl, which was incorporated in the zeolitic waste, did not negatively affect the compressive strength of the alkali-activated BBA samples. This investigation proved that waste materials can be reused by producing alkali-activated binders.


Subject(s)
Alkalies/chemistry , Biomass , Coal Ash/analysis , Solid Waste/analysis , Solid Waste/statistics & numerical data , Zeolites/chemistry , Coal Ash/chemistry
6.
Sci Rep ; 10(1): 352, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31941924

ABSTRACT

In the petroleum industry during a catalytic cracking process, the used zeolitic catalyst becomes waste. This article investigated the sorption capacities of ammonium ions from aqueous solutions onto the previously mentioned zeolitic waste by batch experiments. Three types of zeolitic waste were used: unmodified zeolitic waste with two different particle size distributions and H2O2-modified zeolitic waste. Several techniques, including X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) multilayer adsorption theory measurements, and X-ray fluorescence analysis (XRF) were used to demonstrate experimentally that the zeolitic waste could be used as a sorbent for the water decontamination of NH4+ ions. The morphology of zeolitic waste investigated by scanning electron microscopy (SEM) revealed particles with a spherical shape. The nitrogen adsorption-desorption isotherms showed an isotherm mixture of types I (pure microporous) and IV (mesoporous). This suggested that the investigated zeolitic materials were mesoporous (4.84 nm) and microporous (0.852 nm), as well as containing slit/cylindric pores, according to a quench solid density functional theory (QSDFT) adsorption branch model. Zeolitic waste from the oil industry showed good NH4+ sorption properties (removal efficiency of 72%), thus becoming a potential adsorbent to be used in the treatment of contaminated aqueous effluents polluted with ammonium ions. Simultaneous waste and water decontamination can be achieved, providing a new tool and enhanced capabilities for environmental remediation.

7.
Environ Sci Pollut Res Int ; 26(18): 18752-18765, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31055754

ABSTRACT

The most common source of pollution is wastewater that comes from the industrial, agricultural, and household sectors. The aim of this work is to evaluate the impact of a new innovative wastewater treatment technology on the water quality of the Leite River, Lithuania. The Leite River basin receives wastewater from the Leitgiriai agglomeration; it is then released into a channel, which is 73 m away from the river. During the implementation of the BSR Interreg project "Water emissions and their reduction in village communities in the Baltic Sea Region as pilots (VillageWater)," the ineffective Leitgiriai wastewater treatment plant (WWTP) was reconstructed in September and October of 2017. Water samples from Leite River were collected in 2010-2018 in three locations: near the Kulynai, Leitgiriai, and Sausgalviai villages in Lithuania. The results show that the wastewater treatment efficiency is statistically higher than that before the reconstruction of the WWTP. The treated wastewater (before and after reconstruction) is released from the Leitgiriai WWTP into the surface water (channel), which flows into the Leite River. The highest concentrations (according to all examined indicators) have been observed in the channel and in the Leite River 500 m after the release point before the reconstruction. All differences are statistically significant (p < 0.05). According to the 2018 values, the water quality of the Leite River did comply with the good ecological status/potential class indicators near the Leitgiriai village. After the Leitgiriai WWTP reconstruction, the wastewater treatment efficiency increased two times on average. Therefore, the Leite River water quality near Leitgiriai improved.


Subject(s)
Environmental Monitoring/methods , Rivers/chemistry , Rivers/microbiology , Water Pollutants, Chemical/analysis , Water Purification/standards , Water Quality , Biological Oxygen Demand Analysis , Lithuania , Wastewater/chemistry , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...