Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 373(2045)2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26032316

ABSTRACT

Recent CMIP5 models predict large losses of summer Arctic sea ice, with only mitigation scenarios showing sustainable summer ice. Sea ice is inherently part of the climate system, and heat fluxes affecting sea ice can be small residuals of much larger air-sea fluxes. We discuss analysis of energy budgets in the Met Office climate models which point to the importance of early summer processes (such as clouds and meltponds) in determining both the seasonal cycle and the trend in ice decline. We give examples from Met Office modelling systems to illustrate how the seamless use of models for forecasting on time scales from short range to decadal might help to unlock the drivers of high latitude biases in climate models.

2.
Nature ; 485(7397): 225-8, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22575964

ABSTRACT

The Antarctic ice sheet loses mass at its fringes bordering the Southern Ocean. At this boundary, warm circumpolar water can override the continental slope front, reaching the grounding line through submarine glacial troughs and causing high rates of melting at the deep ice-shelf bases. The interplay between ocean currents and continental bathymetry is therefore likely to influence future rates of ice-mass loss. Here we show that a redirection of the coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf during the second half of the twenty-first century would lead to increased movement of warm waters into the deep southern ice-shelf cavity. Water temperatures in the cavity would increase by more than 2 degrees Celsius and boost average basal melting from 0.2 metres, or 82 billion tonnes, per year to almost 4 metres, or 1,600 billion tonnes, per year. Our results, which are based on the output of a coupled ice-ocean model forced by a range of atmospheric outputs from the HadCM3 climate model, suggest that the changes would be caused primarily by an increase in ocean surface stress in the southeastern Weddell Sea due to thinning of the formerly consolidated sea-ice cover. The projected ice loss at the base of the Filchner-Ronne Ice Shelf represents 80 per cent of the present Antarctic surface mass balance. Thus, the quantification of basal mass loss under changing climate conditions is important for projections regarding the dynamics of Antarctic ice streams and ice shelves, and global sea level rise.

SELECTION OF CITATIONS
SEARCH DETAIL
...