Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 13(7): e202000025, 2020 07.
Article in English | MEDLINE | ID: mdl-32277566

ABSTRACT

Osteoporosis is a disease characterized by bone mineral density reduction, weakening the bone structure. Its diagnosis is performed using ionizing radiation, increasing health risk. Optical techniques are safer, due to non-ionizing radiation use, but limited to the analyses of bone tissue. This limitation may be circumvented in the oral cavity. In this work we explored the use of laser speckle imaging (LSI) to differentiate the sound and osteoporotic maxilla and mandible bones in an in vitro model. Osteoporosis lesions were simulated with acid attack. The samples were evaluated by optical profilometry and LSI, using a custom software. Two image parameters were evaluated, speckle contrast ration and patches ratio. With the speckle contrast ratio, it was possible to differentiate sound from osteoporotic tissue. From speckle patches ratio it was observed a negative correlation with the roughness parameter. LSI is a promissory technique for assessment of osteoporosis lesions on alveolar bone.


Subject(s)
Diagnostic Imaging , Osteoporosis , Humans , Osteoporosis/diagnostic imaging
2.
Sci Rep ; 9(1): 4167, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862829

ABSTRACT

We designed a real time, single-laser focus tracking system using low coherence properties of the machining femtosecond laser itself in order to monitor and correct the sample position relative to the focal plane. Using a Michelson Interferometer, the system collects data arising from part of the beam backscattered at the ablation spot. The data is analyzed by a custom software for position correction (employing an XYZ automated translation stage). With the focus tracking enabled we were able to etch channels with a stable cross-section profile on a bovine tooth with relief amplitude tens of times greater than the Rayleigh length of the system, keeping the sample inside the confocal parameter during most of the processing time. Moreover, the system is also capable of monitoring crater depth evolution during the ablation process, allowing for material removal assessment.

3.
Waste Manag ; 68: 475-481, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28739025

ABSTRACT

Management of waste of electric and electronic equipment (WEEE) is a key issue for modern societies; furthermore, it contains valuable materials that can be recycled, especially in printed circuit boards (PCB), which have approximately one-third of their weight in copper. In this study we demonstrated the use of laser to strip the covering soldering mask on PCB's, thus exposing the copper underneath so that extraction techniques may take place. Using a Q-Switched Nd:YAG laser operating at 1064nm and 532nm we tested the procedure under different energy conditions. The laser stripping of the soldering mask was achieved with satisfactory results by irradiation with 225mJ at 1064nm. However, when using similar parameters at 532nm the process of the coating ejection was not promoted properly, leading to a faulty detachment. Infrared laser PCB stripping presents itself to be technically viable and environmental friendly, since it uses no chemicals inputs, offering one more option to WEEE treatment and recycling.


Subject(s)
Electronic Waste , Lasers , Masks , Recycling , Copper
4.
Photochem Photobiol ; 88(5): 1211-6, 2012.
Article in English | MEDLINE | ID: mdl-22540924

ABSTRACT

The results of many investigations on low-level laser therapy are contradictory and this is due to the large number of illumination parameters as well as the inability to measure the possible effects after irradiation with the necessary objectivity and the fact that the light needs to pass thorough barriers (usually the plastic of the culture dish/plate and culture medium) to reach the cells. In this manner, the objective of this study was to determine the absorption coefficient, penetration depth and effective transmission in materials commonly used in cell cultures. Among the most commonly used wavelengths in low-level laser therapy, the lowest absorption coefficients were reached by DMEM and RPMI (α = 0.03 cm(-1)), from 633 to 690 nm, which reach an effective transmission of 93% of incident radiation and penetration depth of 33 cm. Among the solid materials in the same range of the electromagnetic spectrum, the lowest absorption coefficient was obtained for the polystyrene (Petri dish and well plate), with α = 1.31 cm(-1), 78% of effective transmission and 0.76 cm of penetration depth. This article also presents a simple equation for estimating the amount of energy that will actually reach the sample.


Subject(s)
Culture Media/radiation effects , Plastics/radiation effects , Radiometry/standards , Light , Radiation Dosage , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...