ABSTRACT
BACKGROUND: Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS: The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS: Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS: The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.
Subject(s)
Hypopituitarism , Mice, Knockout , Pituitary Gland , Hypopituitarism/genetics , Animals , Humans , Pituitary Gland/metabolism , Pituitary Gland/abnormalities , Pituitary Gland/pathology , Mice , Phenotype , Female , Male , Disease Models, Animal , Exome Sequencing , Septo-Optic Dysplasia/geneticsABSTRACT
The hypothalamic-pituitary-gonadal (HPG) axis is the principal modulator of reproductive function. Proper control of this system relies on several hormonal pathways, which make the female reproductive components susceptible to disruption by endocrine-disrupting chemicals such as tributyltin (TBT). Here, we review the relevant research on the associations between TBT exposure and dysfunction of the female HPG axis components. Specifically, TBT reduced hypothalamic gonadotropin-releasing hormone (GnRH) expression and gonadotropin release, and impaired ovarian folliculogenesis, steroidogenesis, and ovulation, at least in part, by causing abnormal sensitivity to steroid feedback mechanisms and deleterious ovarian effects. This review covers studies using environmentally relevant doses of TBT in vitro (1 ng-20 ng/ml) and in vivo (10 ng-20 mg/kg) in mammals. The review also includes discussion of important gaps in the literature and suggests new avenue of research to evaluate the possible mechanisms underlying TBT-induced toxicity in the HPG axis. Overall, the evidence indicates that TBT exposure is associated with toxicity to the components of the female reproductive axis. Further studies are needed to better elucidate the mechanisms through which TBT impairs the ability of the HPG axis to control reproduction.