Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
J Chem Phys ; 151(14): 144701, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615238

ABSTRACT

A general synthesis approach of aqueous glutathione-capped ternary Ag-In-S, Cu-In-S, and Hg-In-S nanocrystals (NCs) is introduced, allowing the NC composition to be varied in a broad range. Ternary Hg-In-S (HIS) NCs are reported for the first time and found to have the same tetragonal chalcopyrite motif as Cu-In-S and Ag-In-S NCs, corroborated by phonon spectra, while X-ray photoelectron spectroscopic data indicate mercury to be present as Hg+ in the Hg-In-S NCs. Colloidal HIS and Hg-In-S/ZnS NCs showed little or no variations of the spectral width of the photoluminescence band upon NC size selection, temperature variation in a broad range of 10-350 K, deposition of a ZnS shell, or postsynthesis annealing. All these observations are similar to those reported earlier for Ag-In-S and Ag-In-S/ZnS NCs and allowed us to assume a general photoluminescence mechanism for all three ternary compounds, based on the model of radiative self-trapped exciton recombination.

3.
Chemphyschem ; 20(12): 1640-1648, 2019 06 17.
Article in English | MEDLINE | ID: mdl-30972929

ABSTRACT

The temperature dependence of the photoluminescence (PL) intensity of colloidal semiconductor nanocrystals (NCs) makes them an appealing option in bio-sensing applications. Here, we probed the temperature-dependent PL behavior of aqueous glutathione (GSH)-capped Ag-In-S (AIS) NCs and their core/shell AIS/ZnS heterostructures. We show that both core and core-shell materials reveal strong PL quenching upon heating from 10 to 80 °C, which is completely reversible upon cooling. The PL quenching is assigned to the thermally activated dissociation of complexes formed by ligands with the metal cations on the NC surface and the introduction of water into the NC coordination sphere. This unique mechanism of the thermal PL quenching results in a much higher temperature sensitivity of the aqueous colloidal AIS (AIS/ZnS) NCs as compared with previously reported analogs capped by covalently bound ligands. Our results are expected to stimulate further studies on aqueous ternary NCs as colloidal luminescent nano-thermometers applicable for ratiometric temperature sensing.

4.
Beilstein J Nanotechnol ; 10: 222-227, 2019.
Article in English | MEDLINE | ID: mdl-30746315

ABSTRACT

The effect of flash-lamp annealing (FLA) on the re-crystallization of thin films made of colloidal Cu2ZnSnS4 nanocrystals (NCs) is investigated by Raman spectroscopy. Unlike similar previous studies of NCs synthesized at high temperatures in organic solvents, NCs in this work, which have diameters as small as 2-6 nm, were synthesized under environmentally friendly conditions in aqueous solution using small molecules as stabilizers. We establish the range of FLA conditions providing an efficient re-crystallization in the thin film of NCs, while preserving their kesterite structure and improving their crystallinity remarkably. The formation of secondary phases at higher FLA power densities, as well as the dependence of the formation on the film thickness are also investigated. Importantly, no inert atmosphere for the FLA treatment of the NCs is required, which makes this technology even more suitable for mass production, in particular for printed thin films on flexible substrates.

5.
Sci Rep ; 8(1): 13677, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30209288

ABSTRACT

Structure, composition, and optical properties of colloidal mercaptoacetate-stabilized Cu2ZnSnS4 (CZTS) nanocrystal inks produced by a "green" method directly in aqueous solutions were characterized. A size-selective precipitation procedure using 2-propanol as a non-solvent allows separating a series of fractions of CZTS nanocrystals with an average size (bandgap) varying from 3 nm (1.72 eV) to 2 nm (2.04 eV). The size-selected CZTS nanocrystals revealed also phonon confinement, with the main phonon mode frequency varying by about 4 cm-1 between 2 nm and 3 nm NCs.

6.
Chem Soc Rev ; 47(14): 5354-5422, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29799031

ABSTRACT

The paper reviews the state of the art in the synthesis of multinary (ternary, quaternary and more complex) metal chalcogenide nanocrystals (NCs) and their applications as a light absorbing or an auxiliary component of light-harvesting systems. This includes solid-state and liquid-junction solar cells and photocatalytic/photoelectrochemical systems designed for the conversion of solar light into the electric current or the accumulation of solar energy in the form of products of various chemical reactions. The review discusses general aspects of the light absorption and photophysical properties of multinary metal chalcogenide NCs, the modern state of the synthetic strategies applied to produce the multinary metal chalcogenide NCs and related nanoheterostructures, and recent achievements in the metal chalcogenide NC-based solar cells and the photocatalytic/photoelectrochemical systems. The review is concluded by an outlook with a critical discussion of the most promising ways and challenging aspects of further progress in the metal chalcogenide NC-based solar photovoltaics and photochemistry.

7.
RSC Adv ; 8(14): 7550-7557, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-35539102

ABSTRACT

Ternary luminescent copper and silver indium sulfide quantum dots (QDs) can be an attractive alternative to cadmium and lead chalcogenide QDs. The optical properties of Cu-In-S and Ag-In-S (AIS) QDs vary over a broad range depending on the QD composition and size. The implementation of ternary QDs as emitters in bio-sensing applications can be boosted by the development of mild and reproducible syntheses directly in aqueous solutions as well as the methods of shifting the photoluminescence (PL) bands of such QDs as far as possible into the near IR spectral range. In the present work, the copper-doping of aqueous non-stoichiometric AIS QDs was found to result in a red shift of the PL band maximum from around 630 nm to ∼780 nm and PL quenching. The deposition of a ZnS shell results in PL intensity recovery with the highest quantum yield of 15%, with almost not change in the PL band position, opposite to the undoped AIS QDs. Size-selective precipitation using 2-propanol as a non-solvent allows discrimination of up to 9 fractions of Cu-doped AIS/ZnS QDs with the average sizes in the fractions varying from around 3 to 2 nm and smaller and with reasonably the same composition irrespective of the QD size. The decrease of the average QD size results in a blue PL shift yielding a series of bright luminophors with the emission color varies from deep-red to bluish-green and the PL efficiency increases from 11% for the first fraction to up to 58% for the smallest Cu-doped AIS/ZnS QDs. The rate constant of the radiative recombination of the size-selected Cu-doped AIS/ZnS QDs revealed a steady growth with the QD size decrease as a result of the size-dependent enhancement of the spatial exciton confinement. The copper doping was found to result in an enhancement of the photoelectrochemical activity of CAIS/ZnS QDs introduced as spectral sensitizers of mesoporous titania photoanodes of liquid-junction solar cells.

8.
J Colloid Interface Sci ; 302(1): 133-41, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16842808

ABSTRACT

Cadmium selenide nanoparticles formation at the interaction between CdCl2 and Na2SeSO3 in aqueous solutions of sodium polyphosphate and gelatin has been studied. Structural and optical properties of CdSe nanoparticles have been characterized. It has been shown that the temperature and the ratio of reagents concentrations are the basic parameters, controlling the size of CdSe nanoparticles. Photocatalytic activity of CdS nanoparticles in Na2SeSO3 reduction has been found and investigated; structural and optical properties of binary CdS/CdSe nanoparticles have been characterized. This photoreaction, when carried out in the presence of CdCl2, results in the formation of composite CdS/CdSe nanoparticles. It has been shown that slow interaction of adsorbed selenosulfate with surface-trapped CdS conduction band electrons is the limiting stage of the photocatalytic reaction.


Subject(s)
Cadmium Compounds/chemical synthesis , Colloids/chemical synthesis , Nanoparticles/chemistry , Polyphosphates/chemistry , Selenium Compounds/chemistry , Selenium Compounds/chemical synthesis , Sulfates/chemistry , Sulfides/chemical synthesis , Cadmium Compounds/chemistry , Catalysis , Colloids/chemistry , Gelatin/chemistry , Kinetics , Photochemistry , Solutions/chemistry , Sulfides/chemistry , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...