Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Evol Biol ; 30(7): 1437-1445, 2017 07.
Article in English | MEDLINE | ID: mdl-28474387

ABSTRACT

Adaptive radiation occurs when species diversify rapidly to occupy an array of ecological niches. As opportunities for parasite infection and transmission may greatly vary among these niches, adaptive radiation is expected to be associated with a turnover of the parasite community. As major agents of natural and sexual selection, parasites may play a central role in host diversification. The study of parasite turnover may thus be of general relevance and could significantly improve our understanding of adaptive radiation. In this study, we examined the parasite faunas of eleven species belonging to the tribe Tropheini, one of several adaptive radiations of cichlid fishes in Lake Tanganyika. The most parsimonious ancestral foraging strategy among the Tropheini is relatively unselective substrate browsing of aufwuchs. Several lineages evolved more specialized foraging strategies, such as selective combing of microscopic diatoms or picking of macro-invertebrates. We found that representatives of these specialized lineages bear reduced infection with food-web-transmitted acanthocephalan helminths, but not with parasites with a direct life cycle. Possibly, the evolution of selective foraging strategies entailed reduced ingestion of intermediate invertebrate hosts of acanthocephalans. We conclude that some species belonging to the Tropheini virtually escape acanthocephalan infection as a by-product of trophic specialization.


Subject(s)
Biological Evolution , Cichlids/parasitology , Helminths/pathogenicity , Phylogeny , Animals , Food Chain , Parasites , Tanzania
3.
Mol Ecol ; 25(21): 5451-5466, 2016 11.
Article in English | MEDLINE | ID: mdl-27596520

ABSTRACT

Geographical isolation, habitat variation and trophic specialization have contributed to a large extent to the astonishing diversity of cichlid fishes in the Great East African lakes. Because parasite communities often vary across space and environments, parasites can accompany and potentially enhance cichlid species diversification. However, host dispersal may reduce opportunities for parasite-driven evolution by homogenizing parasite communities and allele frequencies of immunity genes. To test for the relationships between parasite community variation, host dispersal and parasite-induced host evolution, we studied two sympatric cichlid species with contrasting dispersal capacities along the shores of southern Lake Tanganyika. Whereas the philopatric Tropheus moorii evolved into several genetically differentiated colour morphs, Simochromis diagramma is phenotypically rather uniform across its distribution range and shows only weak population structure. Populations of both species were infected with divergent parasite communities and harbour differentiated variant pools of an important set of immune genes, the major histocompatibility complex (MHC). The overall extent of geographical variation of parasites and MHC genes was similar between host species. This indicates that immunogenetic divergence among populations of Lake Tanganyika cichlids can occur even in species that are strongly dispersing. However, because this also includes species that are phenotypically uniform, parasite-induced evolution may not represent a key factor underlying species diversification in this system.


Subject(s)
Animal Distribution , Cichlids/genetics , Cichlids/parasitology , Immunogenetics , Sympatry , Animals , Cichlids/immunology , Genetics, Population , Major Histocompatibility Complex/genetics , Parasites , Phenotype , Tanzania
4.
J Evol Biol ; 27(10): 2177-90, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25201492

ABSTRACT

Studying the genetic basis of host-parasite interactions represents an outstanding opportunity to observe eco-evolutionary processes. Established candidates for such studies in vertebrates are immunogenes of the major histocompatibility complex (MHC). The MHC has been reported to reach high intra- and interindividual diversity, and a diverse MHC might be advantageous when facing infections from multiple parasites. However, other studies indicated that individuals with an intermediate number of MHC alleles are less infected with parasites or have other fitness advantages. In this study, we assessed the optimal number of MHC alleles in the blunt-head cichlid Tropheus moorii from Lake Tanganyika. We investigated the influence of the interindividual variation in number of MHC length variants on parasite infection and body condition, measured by the amount of perivisceral fat reserves. Surprisingly, there was no correlation between parasite infection and number of MHC length variants or perivisceral fat deposits. However, the individual number of MHC length variants significantly correlated with the amount of perivisceral fat deposits in males, suggesting that male individuals with an intermediate number of alleles might be able to use their fat reserves more efficiently.


Subject(s)
Adipose Tissue/anatomy & histology , Cichlids/anatomy & histology , Cichlids/genetics , Cichlids/parasitology , Genes, MHC Class II , Animals , Body Size , Female , Genotype , Linear Models , Male , Microsatellite Repeats , Molecular Sequence Data , Parasite Load
5.
Heredity (Edinb) ; 113(1): 32-41, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24619176

ABSTRACT

The size, structure and distribution of host populations are key determinants of the genetic composition of parasite populations. Despite the evolutionary and epidemiological merits, there has been little consideration of how host heterogeneities affect the evolutionary trajectories of parasite populations. We assessed the genetic composition of natural populations of the parasite Schistosoma mansoni in northern Senegal. A total of 1346 parasites were collected from 14 snail and 57 human hosts within three villages and individually genotyped using nine microsatellite markers. Human host demographic parameters (age, gender and village of residence) and co-infection with Schistosoma haematobium were documented, and S. mansoni infection intensities were quantified. F-statistics and clustering analyses revealed a random distribution (panmixia) of parasite genetic variation among villages and hosts, confirming the concept of human hosts as 'genetic mixing bowls' for schistosomes. Host gender and village of residence did not show any association with parasite genetics. Host age, however, was significantly correlated with parasite inbreeding and heterozygosity, with children being more infected by related parasites than adults. The patterns may be explained by (1) genotype-dependent 'concomitant immunity' that leads to selective recruitment of genetically unrelated worms with host age, and/or (2) the 'genetic mixing bowl' hypothesis, where older hosts have been exposed to a wider variety of parasite strains than children. The present study suggests that host-specific factors may shape the genetic composition of schistosome populations, revealing important insights into host-parasite interactions within a natural system.


Subject(s)
Genetic Variation/genetics , Genetics, Population , Host-Parasite Interactions/genetics , Inbreeding , Schistosoma mansoni/genetics , Adult , Age Factors , Animals , Bayes Theorem , Child , Cluster Analysis , Female , Genotype , Humans , Male , Microsatellite Repeats/genetics , Polymerase Chain Reaction , Senegal , Sex Factors
6.
Mol Ecol ; 23(3): 618-36, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24354713

ABSTRACT

Unravelling the factors shaping the genetic structure of mobile marine species is challenging due to the high potential for gene flow. However, genetic inference can be greatly enhanced by increasing the genomic, geographical or environmental resolution of population genetic studies. Here, we investigated the population structure of turbot (Scophthalmus maximus) by screening 17 random and gene-linked markers in 999 individuals at 290 geographical locations throughout the northeast Atlantic Ocean. A seascape genetics approach with the inclusion of high-resolution oceanographical data was used to quantify the association of genetic variation with spatial, temporal and environmental parameters. Neutral loci identified three subgroups: an Atlantic group, a Baltic Sea group and one on the Irish Shelf. The inclusion of loci putatively under selection suggested an additional break in the North Sea, subdividing southern from northern Atlantic individuals. Environmental and spatial seascape variables correlated marginally with neutral genetic variation, but explained significant proportions (respectively, 8.7% and 10.3%) of adaptive genetic variation. Environmental variables associated with outlier allele frequencies included salinity, temperature, bottom shear stress, dissolved oxygen concentration and depth of the pycnocline. Furthermore, levels of explained adaptive genetic variation differed markedly between basins (3% vs. 12% in the North and Baltic Sea, respectively). We suggest that stable environmental selection pressure contributes to relatively strong local adaptation in the Baltic Sea. Our seascape genetic approach using a large number of sampling locations and associated oceanographical data proved useful for the identification of population units as the basis of management decisions.


Subject(s)
Flatfishes/genetics , Gene Flow , Genetic Variation , Genetics, Population , Adaptation, Physiological/genetics , Animals , Atlantic Ocean , Environment , Gene Frequency , Genetic Markers , Genotype , Microsatellite Repeats , North Sea , Selection, Genetic
7.
Aquat Toxicol ; 126: 242-55, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23247545

ABSTRACT

Understanding the effects of chronic exposure to pollutants on the genome and transcriptome of diadromous fish populations is crucial for their resilience under combined anthropogenic and environmental selective pressures. The catadromous European eel (Anguilla anguilla L.) has suffered a dramatic decline in recruitment for three decades, necessitating a thorough assessment of the transcriptional effects of environmental pollutants on resident and migrating eels in natural systems. We investigated the relationship between muscular bioaccumulation levels of metals (Hg, Cd, Pb, Cu, Zn, Ni, Cr, As and Se), PCBs and organochlorine pesticides (DDTs), the health status (condition factor and lipid reserves) and the associated transcriptional response in liver and gill tissues for genes involved in metal detoxification (metallothionein, MT) and oxidative metabolism (cytochrome P4501A, CYP1A) of xenobiotic compounds. In total 84 resident eels originating from three Belgian river basins (Scheldt, Meuse and Yzer) were analyzed along with five unpolluted aquaculture samples as control group. There was a large spatial variation in individual contaminant intensity and profile, while tissue pollution levels were strongly and negatively associated with condition indices, suggesting an important impact of pollution on the health of sub-adult resident eels. Gene transcription patterns revealed a complex response mechanism to a cocktail of pollutants, with a high variation at low pollution levels, but strongly down-regulated hepatic and gill gene transcription in highly polluted eels. Resident eels clearly experience a high pollution burden and seem to show a dysfunctional gene transcription regulation of detoxification genes at higher pollutant levels, correlated with low energy reserves and condition. To fully understand the evolutionary implications of pollutants on eel reproductive fitness, analyses of mature migrating eels and the characterization of their transcriptome-wide gene transcription response would be appropriate to unveil the complex responses associated with multiple interacting stressors and the long-term consequences at the entire species level. In the meanwhile, jointly monitoring environmental and tissue pollution levels at a European scale should be initiated, while preserving high quality habitats to increase the recovery chance of European eel in the future.


Subject(s)
Anguilla , Environmental Exposure , Gene Expression Regulation/drug effects , Water Pollutants, Chemical/toxicity , Animals , Fish Proteins/genetics , Fresh Water/chemistry , Gene Expression Profiling , Health Status , Lipid A/analysis , Liver/chemistry , Liver/drug effects , Principal Component Analysis
8.
J Evol Biol ; 24(9): 1975-83, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21649765

ABSTRACT

Ecological selection against hybrids between populations occupying different habitats might be an important component of reproductive isolation during the initial stages of speciation. The strength and directionality of this barrier to gene flow depends on the genetic architecture underlying divergence in ecologically relevant phenotypes. We here present line cross analyses of inheritance for two key foraging-related morphological traits involved in adaptive divergence between stickleback ecotypes residing parapatrically in lake and stream habitats within the Misty Lake watershed (Vancouver Island, Canada). One main finding is the striking genetic dominance of the lake phenotype for body depth. Selection associated with this phenotype against first- and later-generation hybrids should therefore be asymmetric, hindering introgression from the lake to the stream population but not vice versa. Another main finding is that divergence in gill raker number is inherited additively and should therefore contribute symmetrically to reproductive isolation. Our study suggests that traits involved in adaptation might contribute to reproductive isolation qualitatively differently, depending on their mode of inheritance.


Subject(s)
Ecotype , Quantitative Trait, Heritable , Reproductive Isolation , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Animals , British Columbia , Female , Gills/anatomy & histology , Lakes , Male , Rivers
9.
J Evol Biol ; 23(12): 2694-708, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20939859

ABSTRACT

Mating isolation is a frequent contributor to ecological speciation - but how consistently does it evolve as a result of divergent selection? We tested for genetically based mating isolation between lake and stream threespine stickleback (Gasterosteus aculeatus L.) from the Misty watershed, Vancouver Island, British Columbia. We combined several design elements that are uncommon in the studies of stickleback mate choice: (i) we used second-generation laboratory-reared fish (to reduce environmental and maternal effects), (ii) we allowed for male-male competitive interactions (instead of the typical no-choice trials) and (iii) we included hybrids along with pure types. Males of different types (Lake, Inlet, hybrid) were paired in aquaria, allowed to build nests and then exposed sequentially to females of all three types. We found that Lake and Inlet males differed in behaviours thought to influence stickleback mate choice (inter- and intra-sexual aggression, display and nest activities), whereas hybrids were either intermediate or apparently 'inferior' in these behaviours. Despite these differences, Lake and Inlet fish did not mate assortatively and hybrid males did not have a mating disadvantage. Our study reinforces the noninevitability of mating isolation evolving in response to ecological differences and highlights the need to further investigate the factors promoting and constraining progress towards ecological speciation.


Subject(s)
Hybridization, Genetic , Mating Preference, Animal , Smegmamorpha/physiology , Social Isolation , Animals , Competitive Behavior , Female , Male , Selection, Genetic
10.
Heredity (Edinb) ; 105(6): 532-42, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20145668

ABSTRACT

An increasing number of phylogeographic studies on marine species shows discordant patterns in the degree of population differentiation between nuclear and mitochondrial markers. To understand better which factors have the potential to cause these patterns of discordance in marine organisms, a population genetic study was realized on the sand goby Pomatoschistus minutus (Pallas 1770; Gobiidae, Teleostei). Sand gobies from eight European locations were genotyped at eight microsatellite markers. Microsatellites confirmed the global phylogeographical pattern of P. minutus observed with mitochondrial DNA (mtDNA) markers and nuclear allozyme markers. Three groups consistent with the mitochondrial lineages were defined (the Mediterranean, Iberian and North Atlantic groups) and indications of a recent founder event in the northern Baltic Sea were found. Nevertheless, differences in the degree of population differentiation between the nuclear and mitochondrial markers were large (global F(ST)-values for microsatellites=0.0121; for allozymes=0.00831; for mtDNA=0.4293). Selection, sex-biased dispersal, homoplasy and a high effective population size are generally accepted as explanations for this mitonuclear discrepancy in the degree of population differentiation. In this study, selection on mtDNA and microsatellites, male-biased dispersal and homoplasy on microsatellite markers are unlikely to be a main cause for this discrepancy. The most likely reason for the discordant pattern is a recent demographical expansion of the sand goby, resulting in high effective population sizes slowing down the differentiation of nuclear DNA.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Perciformes/classification , Perciformes/genetics , Animals , Europe , Evolution, Molecular , Female , Genetic Variation , Genotype , Male , Microsatellite Repeats , Molecular Sequence Data , Oceans and Seas , Phylogeny
11.
J Evol Biol ; 22(8): 1695-707, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19555450

ABSTRACT

Developmental instability (DI) is the sensitivity of a developing trait to random noise and can be measured by degrees of directionally random asymmetry [fluctuating asymmetry (FA)]. FA has been shown to increase with loss of genetic variation and inbreeding as measures of genetic stress, but associations vary among studies. Directional selection and evolutionary change of traits have been hypothesized to increase the average levels of FA of these traits and to increase the association strength between FA and population-level genetic variation. We test these two hypotheses in three-spined stickleback (Gasterosteus aculeatus L.) populations that recently colonized the freshwater habitat. Some traits, like lateral bone plates, length of the pelvic spine, frontal gill rakers and eye size, evolved in response to selection regimes during colonization. Other traits, like distal gill rakers and number of pelvic fin rays, did not show such phenotypic shifts. Contrary to a priori predictions, average FA did not systematically increase in traits that were under presumed directional selection, and the increases observed in a few traits were likely to be attributable to other factors. However, traits under directional selection did show a weak but significantly stronger negative association between FA and selectively neutral genetic variation at the population level compared with the traits that did not show an evolutionary change during colonization. These results support our second prediction, providing evidence that selection history can shape associations between DI and population-level genetic variation at neutral markers, which potentially reflect genetic stress. We argue that this might explain at least some of the observed heterogeneities in the patterns of asymmetry.


Subject(s)
Biological Evolution , Genetic Variation , Smegmamorpha/genetics , Animals , Phenotype , Smegmamorpha/growth & development
12.
Aquat Toxicol ; 73(1): 99-114, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15892996

ABSTRACT

Understanding the effects of pollutants on the genome is of crucial importance to preserve the evolutionary potential of endangered natural populations. The highly vagile European eel (Anguilla anguilla L.) has suffered a dramatic decline in recruitment since two decades, urging for a better understanding of the genetic impact of pollution. Its catadromous life history constitutes a model to assess local selection of pollutants on condition and genetic variability, as juveniles recruit in European rivers without appreciable pollution load or interfering genetic background. Because of its high fat content and local benthic feeding behaviour, the feeding stage is considered extremely prone to the bioaccumulation of pollutants. We studied the relationship between heavy metal bioaccumulation, fitness (condition) and genetic variability in the European eel. The muscle tissues of 78 sub-adult eels, originating from three Belgian river basins (Scheldt, Meuse and Yser), were examined for nine heavy metal pollutants (Hg, Cd, Pb, Cu, Zn, Ni, Cr, As and Se), while in total 123 individuals were genotyped at 12 allozyme and 8 microsatellite loci. A significant negative correlation between heavy metal pollution load and condition was observed, suggesting an impact of pollution on the health of sub-adult eels. In general, we observed a reduced genetic variability in strongly polluted eels, as well as a negative correlation between level of bioaccumulation and allozymatic multi-locus heterozygosity (MLH). Microsatellite genetic variability did not show any pollution related differences, suggesting a differential response at metabolic enzymes and possibly direct overdominance of heterozygous individuals.


Subject(s)
Anguilla/metabolism , Body Constitution/drug effects , Environmental Monitoring/methods , Genetic Variation , Metals, Heavy/pharmacokinetics , Toxicology/methods , Water Pollutants, Chemical/pharmacokinetics , Anguilla/genetics , Animals , Belgium , Fresh Water , Gene Frequency , Genetic Carrier Screening , Genotype , Isoenzymes , Metals, Heavy/toxicity , Microsatellite Repeats/genetics , Muscle, Skeletal/metabolism , Water Pollutants, Chemical/toxicity
13.
Mol Ecol ; 14(4): 1001-14, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15773932

ABSTRACT

The anadromous-freshwater three-spined stickleback (Gasterosteus aculeatus) system allows for inferring the role of adaptation in speciation with a high level of accuracy because the freshwater ecotype has evolved multiple times from a uniform anadromous ancestor. A cause for concern is that independent evolution among drainages is not guaranteed in areas with a poorly resolved glacial history. This is the case for the west European great rivers, whose downstream valleys flanked the southern limit of the late Pleistocene ice sheet. We tested for independent and postglacial colonization of these valleys hypothesizing that the relationships among anadromous and freshwater sticklebacks correspond to a raceme structure. We compared the reduction in plate number accompanying this colonization to the genetic differentiation using 13 allozyme and five microsatellite loci in 350 individuals. Overall microsatellite differentiation (F(ST) = 0.147) was twice as large as allozyme differentiation (F(ST) = 0.066). Although habitat-specific gene flow may mask the ancestral relationships among both ecotypes, levels of microsatellite differentiation supported the hypothesis of raceme-like divergence, reflecting independent colonizations rather than the presence of two distinct evolutionary clades. Under an infinite alleles model and in the absence of gene flow, the observed freshwater divergence might be reached after 440 (microsatellites) to 4500 (allozymes) generations. Hence, the anadromous-freshwater stickleback system most likely diverged postglacially. We conclude that the reduction in plate number in two freshwater basins probably occurred independently, and that its considerable variation among populations is not in agreement with the time since divergence.


Subject(s)
Evolution, Molecular , Genetic Variation , Skin/anatomy & histology , Smegmamorpha/genetics , Animals , Enzymes/genetics , Europe , Fresh Water , Genotype , Geography , Microsatellite Repeats/genetics , Muscles/enzymology , Smegmamorpha/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...