Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Bioorg Med Chem Lett ; 20(3): 853-6, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20060717

ABSTRACT

To selectively target doxorubicin (Dox) to tumor tissue and thereby improve the therapeutic index and/or efficacy of Dox, matrix metalloproteinases (MMP) activated peptide-Dox prodrugs were designed and synthesized by coupling MMP-cleavable peptides to Dox. Preferred conjugates were good substrates for MMPs, poor substrates for neprilysin, an off-target proteinase, and stable in blood ex vivo. When administered to mice with HT1080 xenografts, conjugates, such as 19, preferentially released Dox in tumor relative to heart tissue and prevented tumor growth with less marrow toxicity than Dox.


Subject(s)
Antineoplastic Agents/chemistry , Doxorubicin/analogs & derivatives , Drug Discovery , Matrix Metalloproteinases/chemistry , Prodrugs/chemistry , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Discovery/methods , Humans , Matrix Metalloproteinases/pharmacology , Mice , Prodrugs/pharmacology , Xenograft Model Antitumor Assays/methods
3.
J Med Chem ; 52(14): 4161-72, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19552436

ABSTRACT

A series of pyrazinone-based heterocycles was identified as potent and orally active corticotropin-releasing factor-1 (CRF(1)) receptor antagonists. Selected compounds proved efficacious in an anxiety model in rats; however, pharmacokinetic properties were not optimal. In this article, we describe an in vitro intrinsic clearance-based approach to the optimization of pyrazinone-based CRF(1) receptor antagonists wherein sites of metabolism were identified by incubation with human liver microsomes. It was found that the rate of metabolism could be decreased by incorporation of appropriate substituents at the primary sites of metabolism. This led to the discovery of compound 12x, a highly potent (IC(50) = 1.0 nM) and selective CRF(1) receptor antagonist with good oral bioavailability (F = 52%) in rats and efficacy in the defensive withdrawal anxiety test in rats.


Subject(s)
Pyrazines/pharmacology , Pyrazines/pharmacokinetics , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Humans , Inhibitory Concentration 50 , Male , Metabolic Clearance Rate , Pyrazines/chemistry , Pyrazines/metabolism , Rats , Receptors, Corticotropin-Releasing Hormone/metabolism
4.
J Med Chem ; 52(14): 4173-91, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19552437

ABSTRACT

Evidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.26 nM. The pharmacokinetic properties of 12p were assessed in rats and Cynomolgus monkeys. Compound 12p was efficacious in the defensive withdrawal test (an animal model of anxiety) in rats. The synthesis, structure-activity relationships and in vivo properties of compounds within the pyrazinone chemotype are described.


Subject(s)
Pyrazines/chemistry , Pyrazines/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Cell Line, Tumor , Humans , Macaca fascicularis , Male , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
5.
J Med Chem ; 50(9): 2269-72, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17402721

ABSTRACT

The CRF antagonist pharmacophore is a heterocyclic ring bearing a critical hydrogen-bond acceptor nitrogen and an orthogonal aromatic ring. CRFR1 antagonists have shown a 40-fold and 200-fold loss in potency against the CRFR1 H199V and M276I mutant receptors, suggesting key interactions with these residues. We have derived a two component computational model that correlates CRFR1 binding affinity within the reported series to antagoinst/H199 complexation energy and M276 hydrophobic contacts.


Subject(s)
Models, Molecular , Pteridines/chemical synthesis , Pyridazines/chemical synthesis , Quantitative Structure-Activity Relationship , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Choroid Plexus/metabolism , Frontal Lobe/metabolism , In Vitro Techniques , Pteridines/chemistry , Pteridines/pharmacology , Pyridazines/chemistry , Pyridazines/pharmacology , Radioligand Assay , Rats , Receptors, Corticotropin-Releasing Hormone/metabolism , Swine
6.
Mol Cancer Ther ; 4(5): 751-60, 2005 May.
Article in English | MEDLINE | ID: mdl-15897239

ABSTRACT

Matrix metalloproteinase (MMP)-activated prodrugs were formed by coupling MMP-cleavable peptides to doxorubicin. The resulting conjugates were excellent in vitro substrates for MMP-2, -9, and -14. HT1080, a fibrosarcoma cell line, was used as a model system to test these prodrugs because these cells, like tumor stromal fibroblasts, expressed several MMPs. In cultured HT1080 cells, simple MMP-cleavable peptides were primarily metabolized by neprilysin, a membrane-bound metalloproteinase. MMP-selective metabolism in cultured HT1080 cells was obtained by designing conjugates that were good MMP substrates but poor neprilysin substrates. To determine how conjugates were metabolized in animals, MMP-selective conjugates were given to mice with HT1080 xenografts and the distribution of doxorubicin was determined. These studies showed that MMP-selective conjugates were preferentially metabolized in HT1080 xenografts, relative to heart and plasma, leading to 10-fold increases in the tumor/heart ratio of doxorubicin. The doxorubicin deposited by a MMP-selective prodrug, compound 6, was more effective than doxorubicin at reducing HT1080 xenograft growth. In particular, compound 6 cured 8 of 10 mice with HT1080 xenografts at doses below the maximum tolerated dose, whereas doxorubicin cured 2 of 20 mice at its maximum tolerated dose. Compound 6 was less toxic than doxorubicin at this efficacious dose because mice treated with compound 6 had no detectable changes in body weight or reticulocytes, a marker for marrow toxicity. Hence, MMP-activated doxorubicin prodrugs have a much higher therapeutic index than doxorubicin using HT1080 xenografts as a preclinical model.


Subject(s)
Doxorubicin/analogs & derivatives , Fibrosarcoma/drug therapy , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Metalloendopeptidases/metabolism , Peptide Fragments/pharmacology , Prodrugs/pharmacology , Animals , Doxorubicin/chemical synthesis , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Drug-Related Side Effects and Adverse Reactions , Fibrosarcoma/metabolism , Humans , Matrix Metalloproteinases, Membrane-Associated , Mice , Neprilysin/pharmacology , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Prodrugs/chemical synthesis , Prodrugs/chemistry , Reticulocytes/drug effects , Reticulocytes/metabolism , Transplantation, Heterologous , Tumor Cells, Cultured
7.
J Med Chem ; 47(23): 5783-90, 2004 Nov 04.
Article in English | MEDLINE | ID: mdl-15509177

ABSTRACT

Corticotropin releasing factor (CRF) is the primary regulator of the hypothalamus-pituitary-adrenal (HPA) axis, coordinating the endocrine, behavioral, and autonomic responses to stress. It has been postulated that small molecules that can antagonize the binding of CRF1 to its receptor may serve as a treatment for anxiety-related and/or affective disorders. Members within a series of 3,4-dihydro-1H-pyrido[2,3-b]pyrazin-2-ones, exemplified by compound 2 (IC50 = 0.70 nM), were found to be very potent antagonists of CRF1. Compound 8w showed high CRF1 receptor binding affinity and was examined further in vivo. The compound was efficacious in a defensive withdrawal model of anxiety in rats and had a long half-life and reasonable oral bioavailability in dog pharmacokinetic studies.


Subject(s)
Pyrazines/chemical synthesis , Pyridines/chemical synthesis , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Administration, Oral , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/pharmacokinetics , Anti-Anxiety Agents/pharmacology , Anxiety/psychology , Behavior, Animal/drug effects , Binding, Competitive , Dogs , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Half-Life , In Vitro Techniques , Male , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Receptors, Corticotropin-Releasing Hormone/metabolism , Structure-Activity Relationship
8.
J Comb Chem ; 4(2): 179-82, 2002.
Article in English | MEDLINE | ID: mdl-11886294

ABSTRACT

A general and mild method for the N-arylation of primary and secondary aliphatic amines is reported. Copper acetate, triethylamine mediated C/N cross-coupling reaction of arylboronic acids at room temperature to solid-supported primary and secondary amines gave good to excellent yields of the desired N-arylated products.


Subject(s)
Amines/chemical synthesis , Chemistry, Organic/methods , Combinatorial Chemistry Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...