Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Neuroscience ; 143(3): 779-92, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17074445

ABSTRACT

The effect of spinal cord injury (SCI) on the expression levels and distribution of water channel aquaporin 4 (AQP4) has not been studied. We have found AQP4 in gray and white matter astrocytes in both uninjured and injured rat spinal cords. AQP4 was detected in astrocytic processes that were tightly surrounding neurons and blood vessels, but more robustly in glia limitans externa and interna, which were forming an interface between spinal cord parenchyma and cerebrospinal fluid (CSF). Such spatial distribution of AQP4 suggests a critical role that astrocytes expressing AQP4 play in the transport of water from blood/CSF to spinal cord parenchyma and vice versa. SCI induced biphasic changes in astrocytic AQP4 levels, including its early down-regulation and subsequent persistent up-regulation. However, changes in AQP4 expression did not correlate well with the onset and magnitude of astrocytic activation, when measured as changes in GFAP expression levels. It appears that reactive astrocytes began expressing increased levels of AQP4 after migrating to the wound area (thoracic region) two weeks after SCI, and AQP4 remained significantly elevated for months after SCI. We also showed that increased levels of AQP4 spread away from the lesion site to cervical and lumbar segments, but only in chronically injured spinal cords. Although overall AQP4 expression levels increased in chronically-injured spinal cords, AQP4 immunolabeling in astrocytic processes forming glia limitans externa was decreased, which may indicate impaired water transport through glia limitans externa. Finally, we also showed that SCI-induced changes in AQP4 protein levels correlate, both temporally and spatially, with persistent increases in water content in acutely and chronically injured spinal cords. Although correlative, this finding suggests a possible link between AQP4 and impaired water transport/edema/syringomyelia in contused spinal cords.


Subject(s)
Aquaporin 4/metabolism , Gene Expression Regulation/physiology , Spinal Cord Injuries/metabolism , Animals , Aquaporin 4/genetics , Astrocytes/metabolism , Autoantigens/metabolism , Blotting, Western/methods , Disease Models, Animal , Fluorescent Antibody Technique/methods , Glial Fibrillary Acidic Protein/metabolism , Male , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Time Factors , Tubulin/metabolism , Water/metabolism , von Willebrand Factor/metabolism
3.
Plant Physiol Biochem ; 38(12): 937-47, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11708356

ABSTRACT

We used immunocytochemistry to investigate the effects of gravistimulation on annexin localization in etiolated pea plumule shoots. In longitudinal sections, an asymmetric annexin immunostaining pattern was observed in a defined group of cells located just basipetal to apical meristems at the main shoot apex and at all of the axillary buds, an area classically referred to as the leaf gap. The pattern was observed using both protein-A-purified anti-annexin and affinity-purified anti-annexin antibodies for the immunostaining. A subset of the cells with the annexin staining also showed an unusually high level of periodic acid Schiff (PAS) staining in their cell walls. Prior to gravistimulation, the highest concentration of annexin was oriented toward the direction of gravity along the apical end of these immunostained cells. In contrast, both at 15 and 30 min after gravistimulation, the annexin immunostain became more evenly distributed all around the cell and more distinctly cell peripheral. The asymmetry along the lower wall of these cells was no longer evident. In accord with current models of annexin action, we interpret the results to indicate that annexin-mediated secretion in the leaf gap area is preferentially toward the apical meristem prior to gravistimulation, and that gravistimulation results in a redirection of this secretion. These data are to our knowledge the first to show a correlation between the vector of gravity and the distribution of annexins in the cells of flowering plants.


Subject(s)
Annexins/metabolism , Gravitropism/physiology , Pisum sativum/metabolism , Plant Proteins/metabolism , Plant Shoots/metabolism , Cell Wall/metabolism , Cytoplasm , Gravitation , Immunohistochemistry , Microscopy, Fluorescence , Pisum sativum/cytology , Pisum sativum/growth & development , Periodic Acid-Schiff Reaction , Plant Shoots/cytology , Plant Shoots/growth & development , Plastids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...