Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(29): 18668-18683, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337206

ABSTRACT

In this work, we prepared nonionic surfactants from waste cooking oil materials. Hydrolysis was carried out for palm and palm kernel waste cooking oils to get a mixture of free fatty acids. The mixture of free acids was esterified with sorbitan and then ethoxylated at different ethylene oxide units. Two surfactants exhibited promising surface-active properties among the six prepared surfactants based on the results of surface tension. The interfacial tension (IFT) around the critical micelle concentration was measured against a series of n-hydrocarbon to detect the minimum alkane carbon number (ACN) (Πmin) for each of these surfactants. The effect of normal and branched alcohols on Πmin was also studied to design the surfactant/alcohol mixture for the chemical flooding process. From the results of IFT, the ethoxylated ester derivatives of palm kernel fatty acids (EPK-20) exhibited minimum IFT γmin (0.06 mN m-1) at Πmin equal to 12, and the ethoxylated ester derivatives of palm fatty acids (EP-40) achieved γmin equal to 0.09 mN m-1 at Πmin of 10. Branched alcohols shifted Πmin to a higher value to reach the equivalent ACN of the crude oil and decrease the IFT to lower values. The flooding process showed that the maximum oil recovery was obtained by EPK-20 (54.2% when used purely and 66.2% when used with isoamyl alcohol). In comparison, EP-40 exhibited that oil recovery equals 46% without alcohol and 46.4% with iso-butanol alcohol. The results were interpreted and discussed based on interfacial properties, wettability alteration, and the ACN.

2.
Ultrasonics ; 110: 106288, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33142226

ABSTRACT

Ultrasound technique is an inexpensive and ecofriendly technology commonly used in oil and gas industry to improve oil recovery and its applications have been successfully tested in both laboratory and field scales. In this technique, high-power ultrasonic waves are utilized downhole to improve oil recovery and reduce formation damage in near wellbore region that causes a reduction in hydrocarbon production rate due to the penetration of mud, scale deposition, etc. In most of the cases, barriers for the oil flow to the wellbore are effectively removed by using the ultrasound technique and the effect of improved oil recovery may last up to several months. The aim of this paper is to provide an overview of recent laboratory, field and mathematical studies to serve as reference for future extensive examination of ultrasound assisted improved oil recovery. As an added value to this field of study, research gaps and opportunities based on the review of recent works were identified and factors that needs to be considered to improve the outcome of future studies were recommended.

3.
Ultrason Sonochem ; 35(Pt A): 243-250, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27720591

ABSTRACT

CO2 flooding process as a common enhanced oil recovery method may suffer from interface instability due to fingering and gravity override, therefore, in this study a method to improve the performance of CO2 flooding through an integrated ultraosund-CO2 flooding process is presented. Ultrasonic waves can deliver energy from a generator to oil and affect its properties such as internal energy and viscosity. Thus, a series of CO2 flooding experiments in the presence of ultrasonic waves were performed for controlled and uncontrolled temperature conditions. Results indicate that oil recovery was improved by using ultrasound-assisted CO2 flooding compared to conventional CO2 flooding. However, the changes were more pronounced for uncontrolled temperature conditions of ultrasound-assisted CO2 flooding. It was found that ultrasonic waves create a more stable interface between displacing and displaced fluids that could be due to the reductions in viscosity, capillary pressure and interfacial tension. In addition, higher CO2 injection rates, increases the recovery factor in all the experiments which highlights the importance of injection rate as another factor on reduction of the fingering effects and improvement of the sweep efficiency.

4.
Ultrason Sonochem ; 26: 428-436, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25616638

ABSTRACT

Ultrasound technique is one of the unconventional enhanced oil recovery methods which has been of interest for more than six decades. However, the majority of the oil recovery mechanisms under ultrasound reported in the previous studies are theoretical. Emulsification is one of the mechanisms happening at the interface of oil and water in porous media under ultrasound. Oppositely, ultrasound is one of the techniques using in oil industry for demulsification of oil/water emulsion. Therefore, the conditions in which emulsification becomes dominant over demulsification under ultrasound should be more investigated. Duration of ultrasound radiation could be one of the factors affecting emulsification and demulsification processes. In this study a technique was developed to investigate the effect of long and short period of ultrasound radiation on emulsification and demulsification of paraffin oil and surfactant solution in porous media. For this purpose, the 2D glass Hele-shaw models were placed inside the ultrasonic bath under long and short period of radiation of ultrasound. A microscope was used above the model for microscopic studies on the interface of oil and water. Diffusion of phases and formation of emulsion were observed in both long and short period of application of ultrasound at the beginning of ultrasound radiation. However, by passing time, demulsification and coalescence of brine droplets inside emulsion was initiated in long period of ultrasound application. Therefore, it was concluded that emulsification could be one of the significant oil recovery mechanisms happening in porous media under short period of application of ultrasound.

5.
Ultrasonics ; 54(2): 655-62, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24075416

ABSTRACT

Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation, heat generation, and viscosity reduction are three of the promising mechanisms causing increase in oil recovery under ultrasound.


Subject(s)
Algorithms , Materials Testing/methods , Models, Chemical , Oils/chemistry , Oils/radiation effects , Petroleum Pollution/prevention & control , Sonication/methods , Computer Simulation , Oils/isolation & purification , Porosity , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...