Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Exp Toxicol ; 42: 9603271231192361, 2023.
Article in English | MEDLINE | ID: mdl-37526177

ABSTRACT

Iron is a necessary biological element and one of the richest in the human body, but it can cause changes in cell function and activity control. Iron is involved in a wide range of oxidation - reduction activities. Whenever iron exceeds the cellular metabolic needs, its excess causes changes in the products of cellular respiration, such as superoxide, hydrogen peroxide and hydroxyl. The formation of these compounds causes cellular toxicity. Lack of control over reactive oxygen species causes damages to DNA, proteins, and lipids. Conversely, superoxide, hydrogen peroxide and hydroxyl are reactive oxygen species, using antioxidants, restoring DNA function, and controlling iron stores lead to natural conditions. Iron poisoning causes clinical manifestations in the gastrointestinal tract, liver, heart, kidneys, and hematopoietic system. When serum iron is elevated, serum iron concentrations, total iron-binding capacity (TIBC) and ferritin will also increase. Supportive care is provided by whole bowel irrigation (WBI), esophagogastroduodenoscopy is required to evaluate mucosal injury and remove undissolved iron tablets. The use of chelator agents such as deferoxamine mesylate, deferasirox, deferiprone, deferitrin are very effective in removing excess iron. Of course, the combined treatment of these chelators plays an important role in increasing iron excretion, and reducing side effects.


Subject(s)
Iron Chelating Agents , Iron , Humans , Iron/metabolism , Deferasirox , Deferiprone , Deferoxamine , Reactive Oxygen Species , Superoxides , Hydrogen Peroxide , Pyridones , Benzoates/therapeutic use , Triazoles , DNA
2.
Caspian J Intern Med ; 13(3): 458-468, 2022.
Article in English | MEDLINE | ID: mdl-35974928

ABSTRACT

Background: Amongst the chemical warfare agents, blistering (vesicant) agents can be significant materials. The most important agent in this group is sulfur mustard (mustard gas) which is known as "King of chemical warfare (CW) agents ". Exposure to this agent, seriously causes damages in several organs, such as the eyes. This article reviews the ophthalmological aspects of sulfur mustard with reference of its management. Methods: A wide-ranging search in PubMed databases, Thomson Reuters and Scopus was done and different aspects of chemical properties of sulfur mustard, its mechanism of action and effects on eyes, clinical finding, diagnostic evaluation, initiate actions, pharmaceutical and surgical interventions was reported. Results: Sulfur mustard can alkylate DNA and RNA strands and break down structures of protein and lipid of cell membrane. This may impair cell energy production, and leads to cell death. Exposure to sulfur mustard, therefore, causes such problems for organs, including irreversible damage to the eyes. Conclusion: Understanding the mechanism of the sulfur mustard effect and the early training in prevention injuries will cause fewer complications and damage to organs, including the eyes. Washing the eyes with tap water or eyewash solutions, using mydriatic drops, anti- inflammatory drugs, matrix metalloproteinase inhibitors and antibiotics may help to the management of poisoning. Surgical interventions including tarsorrhaphy, amniotic membrane transplantation, stem cell transplantation and corneal transplantation could reduce the harm to the victims.

3.
Caspian J Intern Med ; 10(3): 241-264, 2019.
Article in English | MEDLINE | ID: mdl-31558985

ABSTRACT

Among the blistering (vesicant) chemical warfare agents (CWA), sulfur mustard is the most important since it is known as the "King of chemical warfare agents". The use of sulfur mustard has caused serious damages in several organs, especially the eyes, skin, respiratory, central and peripheral nervous systems after short and long term exposure, incapacitating and even killing people and troops. In this review, chemical properties, mechanism of actions and their effects on each organ, clinical manifestations, diagnostic evaluation of the actions triage, and treatment of injuries have been described.

4.
Caspian J Intern Med ; 8(3): 135-145, 2017.
Article in English | MEDLINE | ID: mdl-28932363

ABSTRACT

Cadmium poisoning has been reported from many parts of the world. It is one of the global health problems that affect many organs and in some cases it can cause deaths annually. Long-term exposure to cadmium through air, water, soil, and food leads to cancer and organ system toxicity such as skeletal, urinary, reproductive, cardiovascular, central and peripheral nervous, and respiratory systems. Cadmium levels can be measured in the blood, urine, hair, nail and saliva samples. Patients with cadmium toxicity need gastrointestinal tract irrigation, supportive care, and chemical decontamination traditional-based chelation therapy with appropriate new chelating agents and nanoparticle-based antidotes. Furthermore it has been likewise recommended to determine the level of food contamination and suspicious areas, consider public education and awareness programs for the exposed people to prevent cadmium poisoning.

5.
Daru ; 22: 46, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24888360

ABSTRACT

Mercury poisoning cases have been reported in many parts of the world, resulting in many deaths every year. Mercury compounds are classified in different chemical types such as elemental, inorganic and organic forms. Long term exposure to mercury compounds from different sources e.g. water, food, soil and air lead to toxic effects on cardiovascular, pulmonary, urinary, gastrointestinal, neurological systems and skin. Mercury level can be measured in plasma, urine, feces and hair samples. Urinary concentration is a good indicator of poisoning of elemental and inorganic mercury, but organic mercury (e.g. methyl mercury) can be detected easily in feces. Gold nanoparticles (AuNPs) are a rapid, cheap and sensitive method for detection of thymine bound mercuric ions. Silver nanoparticles are used as a sensitive detector of low concentration Hg2+ ions in homogeneous aqueous solutions. Besides supportive therapy, British anti lewisite, dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA. succimer) and dimercaptopropanesulfoxid acid (DMPS) are currently used as chelating agents in mercury poisoning. Natural biologic scavengers such as algae, azolla and other aquatic plants possess the ability to uptake mercury traces from the environment.


Subject(s)
Mercury Poisoning/diagnosis , Mercury Poisoning/drug therapy , Chelating Agents/therapeutic use , Humans , Mercury/toxicity , Metal Nanoparticles , Thymine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...