Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 67(3): 387-399.e5, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28712728

ABSTRACT

The DNA-mediated innate immune response underpins anti-microbial defenses and certain autoimmune diseases. Here we used immunoprecipitation, mass spectrometry, and RNA sequencing to identify a ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1 that we dubbed the HEXIM1-DNA-PK-paraspeckle components-ribonucleoprotein complex (HDP-RNP). The HDP-RNP contains DNA-PK subunits (DNAPKc, Ku70, and Ku80) and paraspeckle proteins (SFPQ, NONO, PSPC1, RBM14, and MATRIN3). We show that binding of HEXIM1 to NEAT1 is required for its assembly. We further demonstrate that the HDP-RNP is required for the innate immune response to foreign DNA, through the cGAS-STING-IRF3 pathway. The HDP-RNP interacts with cGAS and its partner PQBP1, and their interaction is remodeled by foreign DNA. Remodeling leads to the release of paraspeckle proteins, recruitment of STING, and activation of DNAPKc and IRF3. Our study establishes the HDP-RNP as a key nuclear regulator of DNA-mediated activation of innate immune response through the cGAS-STING pathway.


Subject(s)
DNA/immunology , Herpesvirus 8, Human/immunology , Immunity, Innate , RNA, Long Noncoding/immunology , RNA-Binding Proteins/immunology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Calcium-Binding Proteins/metabolism , DNA/genetics , DNA/metabolism , DNA-Binding Proteins , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/virology , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Ku Autoantigen/genetics , Ku Autoantigen/immunology , Ku Autoantigen/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Multiprotein Complexes , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/immunology , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Nuclear Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Nucleotidyltransferases/metabolism , Octamer Transcription Factors/genetics , Octamer Transcription Factors/immunology , Octamer Transcription Factors/metabolism , PTB-Associated Splicing Factor/genetics , PTB-Associated Splicing Factor/immunology , PTB-Associated Splicing Factor/metabolism , Protein Binding , RNA Interference , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Transcription Factors , Transfection
3.
Mol Cell ; 66(3): 411-419.e4, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28457744

ABSTRACT

Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Here, we show that transient Piwi depletion in Drosophila embryos results in H3K9me3 decrease at piRNA clusters in ovaries. This is accompanied by impaired biogenesis of ovarian piRNAs, accumulation of transposable element transcripts, and female sterility. Conversely, Piwi depletion at later developmental stages does not disturb piRNA cluster licensing. These results indicate that the identity of piRNA clusters is epigenetically acquired in a Piwi-dependent manner during embryonic development, which is reminiscent of the widespread genome reprogramming occurring during early mammalian zygotic development.


Subject(s)
Argonaute Proteins/metabolism , DNA Methylation , DNA Transposable Elements , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Epigenetic Repression , Heterochromatin/metabolism , Ovary/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Age Factors , Animals , Argonaute Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Female , Fertility , Gene Expression Regulation, Developmental , Heterochromatin/genetics , Histones/metabolism , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/physiopathology , Methylation , Morphogenesis , Ovary/embryology , Protein Binding , RNA, Small Interfering/genetics
4.
EMBO J ; 36(7): 934-948, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28254838

ABSTRACT

The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII.


Subject(s)
Gene Expression Regulation , RNA, Small Nuclear/biosynthesis , Ribonucleoproteins/metabolism , Transcription Factors/metabolism , Chromatin Immunoprecipitation , HeLa Cells , Humans , RNA Polymerase II/metabolism
5.
Nature ; 543(7646): 564-567, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28297712

ABSTRACT

The persistence of the HIV reservoir in infected individuals is a major obstacle to the development of a cure for HIV. Here, using an in vitro model of HIV-infected quiescent CD4 T cells, we reveal a gene expression signature of 103 upregulated genes that are specific for latently infected cells, including genes for 16 transmembrane proteins. In vitro screening for surface expression in HIV-infected quiescent CD4 T cells shows that the low-affinity receptor for the immunoglobulin G Fc fragment, CD32a, is the most highly induced, with no detectable expression in bystander cells. Notably, productive HIV-1 infection of T-cell-receptor-stimulated CD4 T cells is not associated with CD32a expression, suggesting that a quiescence-dependent mechanism is required for its induction. Using blood samples from HIV-1-positive participants receiving suppressive antiretroviral therapy, we identify a subpopulation of 0.012% of CD4 T cells that express CD32a and host up to three copies of HIV DNA per cell. This CD32a+ reservoir was highly enriched in inducible replication-competent proviruses and can be predominant in some participants. Our discovery that CD32a+ lymphocytes represent the elusive HIV-1 reservoir may lead to insights that will facilitate the specific targeting and elimination of this reservoir.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/growth & development , Proviruses/growth & development , Receptors, IgG/metabolism , Virus Replication , Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/cytology , Cell Division , Cell Separation , Cells, Cultured , DNA, Viral/analysis , Gene Expression Profiling , HEK293 Cells , HIV Infections/blood , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/genetics , HIV-1/isolation & purification , Humans , Proviruses/genetics , Proviruses/isolation & purification , Up-Regulation/genetics , Virus Latency/drug effects , Virus Latency/genetics , Virus Latency/immunology
6.
Nat Commun ; 5: 5531, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25410209

ABSTRACT

RNA polymerase II (RNAPII) pausing/termination shortly after initiation is a hallmark of gene regulation. Here, we show that negative elongation factor (NELF) interacts with Integrator complex subunits (INTScom), RNAPII and Spt5. The interaction between NELF and INTScom subunits is RNA and DNA independent. Using both human immunodeficiency virus type 1 promoter and genome-wide analyses, we demonstrate that Integrator subunits specifically control NELF-mediated RNAPII pause/release at coding genes. The strength of RNAPII pausing is determined by the nature of the NELF-associated INTScom subunits. Interestingly, in addition to controlling RNAPII pause-release INTS11 catalytic subunit of the INTScom is required for RNAPII processivity. Finally, INTScom target genes are enriched in human immunodeficiency virus type 1 transactivation response element/NELF binding element and in a 3' box sequence required for small nuclear RNA biogenesis. Revealing these unexpected functions of INTScom in regulating RNAPII pause-release and completion of mRNA synthesis of NELF-target genes will contribute to our understanding of the gene expression cycle.


Subject(s)
Carrier Proteins/metabolism , Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcriptional Elongation Factors/metabolism , Endoribonucleases , Gene Expression Regulation , HIV-1/genetics , Humans , Phosphorylation , Promoter Regions, Genetic , Protein Subunits/metabolism , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...