Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Blood Adv ; 1(6): 341-351, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-29296949

ABSTRACT

T-helper 17 (Th17) cells have been widely implicated as drivers of autoimmune disease. In particular, Th17 cytokine plasticity and acquisition of an interleukin-17A+(IL-17A+)interferon γ(IFNγ)+ cytokine profile is associated with increased pathogenic capacity. Donor Th17 polarization is known to exacerbate graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-SCT); however, donor Th17 cytokine coexpression and plasticity have not been fully characterized. Using IL-17 "fate-mapping" mice, we identified IL-6-dependent Th17 cells early after allo-SCT, characterized by elevated expression of proinflammatory cytokines, IL-17A, IL-22, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor. This population did not maintain lineage fidelity, with a marked loss of IL-17A and IL-22 expression late posttransplant. Th17 cells were further segregated based on IFNγ coexpression, and IL-17A+IFNγ+ Th17 displayed an enhanced proinflammatory phenotype. Th17 cytokine plasticity and IFNγ production were critically dependent upon donor-derived IL-12p40, and cyclosporine (CsA) treatment regulated this differentiation pathway. This observation was highly concordant with clinical samples from allo-SCT recipients receiving CsA-based immune suppression where although the IFNγ-negative-Th17 subset predominated, IFNγ+-Th17 cells were also present. In sum, Th17 polarization and ensuing differentiation are mediated by sequential inflammatory signals, which are modulated by immunosuppressive therapy, leading to distinct phenotypes within this lineage.

2.
Blood ; 126(13): 1609-20, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26206951

ABSTRACT

IL-17-producing cells are important mediators of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (SCT). Here we demonstrate that a distinct CD8(+) Tc17 population develops rapidly after SCT but fails to maintain lineage fidelity such that they are unrecognizable in the absence of a fate reporter. Tc17 differentiation is dependent on alloantigen presentation by host dendritic cells (DCs) together with IL-6. Tc17 cells express high levels of multiple prototypic lineage-defining transcription factors (eg, RORγt, T-bet) and cytokines (eg, IL-17A, IL-22, interferon-γ, granulocyte macrophage colony-stimulating factor, IL-13). Targeted depletion of Tc17 early after transplant protects from lethal acute GVHD; however, Tc17 cells are noncytolytic and fail to mediate graft-versus-leukemia (GVL) effects. Thus, the Tc17 differentiation program during GVHD culminates in a highly plastic, hyperinflammatory, poorly cytolytic effector population, which we term "inflammatory iTc17" (iTc17). Because iTc17 cells mediate GVHD without contributing to GVL, therapeutic inhibition of iTc17 development in a clinical setting represents an attractive approach for separating GVHD and GVL.


Subject(s)
CD8-Positive T-Lymphocytes/pathology , Graft vs Host Disease/pathology , Graft vs Leukemia Effect , Interleukin-17/immunology , Stem Cell Transplantation/adverse effects , Th17 Cells/pathology , Animals , Bone Marrow Transplantation/adverse effects , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Graft vs Host Disease/immunology , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Th17 Cells/immunology
3.
Blood ; 125(15): 2435-44, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25673640

ABSTRACT

Idiopathic pneumonia syndrome (IPS) is a relatively common, frequently fatal clinical entity, characterized by noninfectious acute lung inflammation following allogeneic stem cell transplantation (SCT), the mechanisms of which are unclear. In this study, we demonstrate that immune suppression with cyclosporin after SCT limits T-helper cell (Th) 1 differentiation and interferon-γ secretion by donor T cells, which is critical for inhibiting interleukin (IL)-6 generation from lung parenchyma during an alloimmune response. Thereafter, local IL-6 secretion induces donor alloantigen-specific Th17 cells to preferentially expand within the lung, and blockade of IL-17A or transplantation of grafts lacking the IL-17 receptor prevents disease. Studies using IL-6(-/-) recipients or IL-6 blockade demonstrate that IL-6 is the critical driver of donor Th17 differentiation within the lung. Importantly, IL-6 is also dysregulated in patients undergoing clinical SCT and is present at very high levels in the plasma of patients with IPS compared with SCT recipients without complications. Furthermore, at the time of diagnosis, plasma IL-6 levels were higher in a subset of IPS patients who were nonresponsive to steroids and anti-tumor necrosis factor therapy. In sum, pulmonary-derived IL-6 promotes IPS via the induction of Th17 differentiation, and strategies that target these cytokines represent logical therapeutic approaches for IPS.


Subject(s)
Acute Lung Injury/etiology , Cyclosporine/adverse effects , Immunosuppressive Agents/adverse effects , Interleukin-17/immunology , Interleukin-6/immunology , Lung/pathology , Stem Cell Transplantation/adverse effects , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Cyclosporine/therapeutic use , Female , Immunosuppressive Agents/therapeutic use , Interferon-gamma/immunology , Lung/drug effects , Lung/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Th17 Cells/drug effects , Th17 Cells/immunology , Transplantation, Homologous
4.
J Clin Invest ; 124(10): 4266-80, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25157821

ABSTRACT

Chronic GVHD (cGVHD) is the major cause of late, nonrelapse death following stem cell transplantation and characteristically develops in organs such as skin and lung. Here, we used multiple murine models of cGVHD to investigate the contribution of macrophage populations in the development of cGVHD. Using an established IL-17-dependent sclerodermatous cGVHD model, we confirmed that macrophages infiltrating the skin are derived from donor bone marrow (F4/80+CSF-1R+CD206+iNOS-). Cutaneous cGVHD developed in a CSF-1/CSF-1R-dependent manner, as treatment of recipients after transplantation with CSF-1 exacerbated macrophage infiltration and cutaneous pathology. Additionally, recipients of grafts from Csf1r-/- mice had substantially less macrophage infiltration and cutaneous pathology as compared with those receiving wild-type grafts. Neither CCL2/CCR2 nor GM-CSF/GM-CSFR signaling pathways were required for macrophage infiltration or development of cGVHD. In a different cGVHD model, in which bronchiolitis obliterans is a prominent manifestation, F4/80+ macrophage infiltration was similarly noted in the lungs of recipients after transplantation, and lung cGVHD was also IL-17 and CSF-1/CSF-1R dependent. Importantly, depletion of macrophages using an anti-CSF-1R mAb markedly reduced cutaneous and pulmonary cGVHD. Taken together, these data indicate that donor macrophages mediate the development of cGVHD and suggest that targeting CSF-1 signaling after transplantation may prevent and treat cGVHD.


Subject(s)
Graft vs Host Disease/pathology , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/cytology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Animals , Antibodies, Monoclonal/chemistry , Cell Separation , Disease Models, Animal , Female , Flow Cytometry , Interleukin-17/metabolism , Lung/pathology , Lung Diseases/pathology , Macrophage Colony-Stimulating Factor/genetics , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Monocytes/cytology , Receptor, Macrophage Colony-Stimulating Factor/genetics , Signal Transduction , Skin/pathology , Stem Cell Transplantation
5.
J Immunol ; 191(10): 5291-303, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24123683

ABSTRACT

Natural regulatory T cells (nTregs) play an important role in tolerance; however, the small numbers of cells obtainable potentially limit the feasibility of clinical adoptive transfer. Therefore, we studied the feasibility and efficacy of using murine-induced regulatory T cells (iTregs) for the induction of tolerance after bone marrow transplantation. iTregs could be induced in large numbers from conventional donor CD4 and CD8 T cells within 1 wk and were highly suppressive. During graft-versus-host disease (GVHD), CD4 and CD8 iTregs suppressed the proliferation of effector T cells and the production of proinflammatory cytokines. However, unlike nTregs, both iTreg populations lost Foxp3 expression within 3 wk in vivo, reverted to effector T cells, and exacerbated GVHD. The loss of Foxp3 in iTregs followed homeostatic and/or alloantigen-driven proliferation and was unrelated to GVHD. However, the concurrent administration of rapamycin, with or without IL-2/anti-IL-2 Ab complexes, to the transplant recipients significantly improved Foxp3 stability in CD4 iTregs (and, to a lesser extent, CD8 iTregs), such that they remained detectable 12 wk after transfer. Strikingly, CD4, but not CD8, iTregs could then suppress Teff proliferation and proinflammatory cytokine production and prevent GVHD in an equivalent fashion to nTregs. However, at high numbers and when used as GVHD prophylaxis, Tregs potently suppress graft-versus-leukemia effects and so may be most appropriate as a therapeutic modality to treat GVHD. These data demonstrate that CD4 iTregs can be produced rapidly in large, clinically relevant numbers and, when transferred in the presence of systemic rapamycin and IL-2, induce tolerance in transplant recipients.


Subject(s)
Graft vs Host Disease/immunology , Immune Tolerance/immunology , Interleukin-2/metabolism , Sirolimus/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Bone Marrow Transplantation , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Proliferation , Cytokines/biosynthesis , Forkhead Transcription Factors/metabolism , Graft vs Host Disease/metabolism , Graft vs Host Disease/prevention & control , Immune Tolerance/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/drug effects
6.
Blood ; 121(17): 3511-20, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23430112

ABSTRACT

Donor T cells play pivotal roles in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects following bone marrow transplantation (BMT). DNAX accessory molecule 1 (DNAM-1) is a costimulatory and adhesion molecule, expressed mainly by natural killer cells and CD8(+) T cells at steady state to promote adhesion to ligand-expressing targets and enhance cytolysis. We have analyzed the role of this pathway in GVHD and GVL. The absence of DNAM-1 on the donor graft attenuated GVHD in major histocompatibility complex (MHC)-mismatched and MHC-matched BMT following conditioning with lethal and sublethal irradiation. In contrast, DNAM-1 was not critical for GVL effects against ligand (CD155) expressing and nonexpressing leukemia. The effects on GVHD following myeloablative conditioning were independent of CD8(+) T cells and dependent on CD4(+) T cells, and specifically donor FoxP3(+) regulatory T cells (Treg). The absence of DNAM-1 promoted the expansion and suppressive function of Treg after BMT. These findings provide support for therapeutic DNAM-1 inhibition to promote tolerance in relevant inflammatory-based diseases characterized by T-cell activation.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/physiology , Bone Marrow Transplantation , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect/immunology , Leukemia, Experimental/prevention & control , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, Differentiation, T-Lymphocyte/chemistry , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Female , Forkhead Transcription Factors/metabolism , Graft vs Host Disease/etiology , Graft vs Host Disease/immunology , Leukemia, Experimental/etiology , Leukemia, Experimental/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Transplantation Conditioning , Tumor Cells, Cultured , Whole-Body Irradiation
7.
Blood ; 119(24): 5898-908, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22538855

ABSTRACT

FoxP3(+) confers suppressive properties and is confined to regulatory T cells (T(reg)) that potently inhibit autoreactive immune responses. In the transplant setting, natural CD4(+) T(reg) are critical in controlling alloreactivity and the establishment of tolerance. We now identify an important CD8(+) population of FoxP3(+) T(reg) that convert from CD8(+) conventional donor T cells after allogeneic but not syngeneic bone marrow transplantation. These CD8(+) T(reg) undergo conversion in the mesenteric lymph nodes under the influence of recipient dendritic cells and TGF-ß. Importantly, this population is as important for protection from GVHD as the well-studied natural CD4(+)FoxP3(+) population and is more potent in exerting class I-restricted and antigen-specific suppression in vitro and in vivo. Critically, CD8(+)FoxP3(+) T(reg) are exquisitely sensitive to inhibition by cyclosporine but can be massively and specifically expanded in vivo to prevent GVHD by coadministering rapamycin and IL-2 antibody complexes. CD8(+)FoxP3(+) T(reg) thus represent a new regulatory population with considerable potential to preferentially subvert MHC class I-restricted T-cell responses after bone marrow transplantation.


Subject(s)
Bone Marrow Transplantation , CD8-Positive T-Lymphocytes/cytology , Forkhead Transcription Factors/metabolism , Immune Tolerance/immunology , T-Lymphocytes, Regulatory/cytology , Animals , Antibodies/administration & dosage , Antibodies/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Proliferation/drug effects , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Epitopes/immunology , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Immune Tolerance/drug effects , Interleukin-2/immunology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/pathology , Mice , Mice, Inbred C57BL , Phenotype , Sirolimus/administration & dosage , Sirolimus/pharmacology , Survival Analysis , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/pharmacology , Transplantation, Homologous
8.
Blood ; 119(24): 5918-30, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22415754

ABSTRACT

Alloreactivity after transplantation is associated with profound immune suppression, and consequent opportunistic infection results in high morbidity and mortality. This immune suppression is most profound during GVHD after bone marrow transplantation where an inflammatory cytokine storm dominates. Contrary to current dogma, which avers that this is a T-cell defect, we demonstrate that the impairment lies within conventional dendritic cells (cDCs). Significantly, exogenous antigens can only be presented by the CD8(-) cDC subset after bone marrow transplantation, and inflammation during GVHD specifically renders the MHC class II presentation pathway in this population incompetent. In contrast, both classic and cross-presentation within MHC class I remain largely intact. Importantly, this defect in antigen processing can be partially reversed by TNF inhibition or the adoptive transfer of donor cDCs generated in the absence of inflammation.


Subject(s)
Antigen Presentation/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Graft vs Host Disease/immunology , Immunosuppression Therapy , Adoptive Transfer , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Bone Marrow Transplantation/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cross-Priming/immunology , Graft vs Host Disease/pathology , Histocompatibility Antigens Class II/immunology , Inflammation/immunology , Inflammation/pathology , Interferon-gamma/metabolism , Isoantigens/immunology , Mice , Mice, Transgenic , Peptides/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Tumor Necrosis Factor-alpha/metabolism
9.
Nat Med ; 18(1): 135-42, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22127134

ABSTRACT

The presentation pathways by which allogeneic peptides induce graft-versus-host disease (GVHD) are unclear. We developed a bone marrow transplant (BMT) system in mice whereby presentation of a processed recipient peptide within major histocompatibility complex (MHC) class II molecules could be spatially and temporally quantified. Whereas donor antigen presenting cells (APCs) could induce lethal acute GVHD via MHC class II, recipient APCs were 100-1,000 times more potent in this regard. After myeloablative irradiation, T cell activation and memory differentiation occurred in lymphoid organs independently of alloantigen. Unexpectedly, professional hematopoietic-derived recipient APCs within lymphoid organs had only a limited capacity to induce GVHD, and dendritic cells were not required. In contrast, nonhematopoietic recipient APCs within target organs induced universal GVHD mortality and promoted marked alloreactive donor T cell expansion within the gastrointestinal tract and inflammatory cytokine generation. These data challenge current paradigms, suggesting that experimental lethal acute GVHD can be induced by nonhematopoietic recipient APCs.


Subject(s)
Antigen-Presenting Cells/immunology , Bone Marrow Transplantation/immunology , CD4-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Histocompatibility Antigens Class II/immunology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/cytology , Cytokines/immunology , Dendritic Cells/immunology , Hematopoietic System/immunology , Humans , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Transplant Donor Site , Transplantation, Homologous
10.
J Infect Dis ; 204(12): 1893-901, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22043019

ABSTRACT

BACKGROUND: Live attenuated varicella vaccine is considered a safe vaccine with serious adverse effects reported only in immunocompromised children. We describe a severe life-threatening infection with varicella vaccine virus causing rash and pneumonitis in a 6-year-old boy with no apparent immunodeficiency. METHODS AND RESULTS: Polymerase chain reaction (PCR) analysis of vesicle swab samples demonstrated varicella zoster virus (VZV). Sequencing of the PCR product demonstrated 100% homology with human herpesvirus 3 strain VZV-Oka ORF62 gene. Routine immunologic investigations failed to demonstrate any abnormality. Total leukocyte, lymphocyte, and neutrophil counts and lymphocyte subsets were normal. Immunoglobulins, C3, C4, and CH50 were intact. Specific IgG to protein and polysaccharide antigens and to Epstein-Barr virus and cytomegalovirus were present. Normal lymphocyte proliferation to phytohemagglutinin and VZV antigens was detected. Neutrophil function and natural killer (NK) cell activity were normal. The analysis of invariant NK T (iNKT) cell numbers and function revealed diminished iNKT cells, reported once previously and unique to our patient, deficient expression of the cognate receptor, CD1d. CONCLUSIONS: This report provides a further link between deficiency of the iNKT/CD1d pathway and increased susceptibility to varicella vaccine virus, suggesting an important role of this innate pathway in host defense against yet another member of the herpesvirus family.


Subject(s)
Antigens, CD1d/metabolism , Chickenpox Vaccine/adverse effects , Chickenpox/immunology , Herpesvirus 3, Human/immunology , Natural Killer T-Cells/immunology , Vaccination/adverse effects , Cell Proliferation , Chickenpox/drug therapy , Chickenpox/virology , Child , Humans , Interferon-gamma/metabolism , Lymphocyte Count , Male , Natural Killer T-Cells/metabolism , Vaccines, Attenuated/adverse effects
11.
Blood ; 118(12): 3399-409, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21719602

ABSTRACT

Although the effects of type II-IFN (IFN-γ) on GVHD and leukemia relapse are well studied, the effects of type I-interferon (type I-IFN, IFN-α/ß) remain unclear. We investigated this using type I-IFN receptor-deficient mice and exogenous IFN-α administration in established models of GVHD and GVL. Type I-IFN signaling in host tissue prevented severe colon-targeted GVHD in CD4-dependent models of GVHD directed toward either major histocompatibility antigens or multiple minor histocompatibility antigens. This protection was the result of suppression of donor CD4(+) T-cell proliferation and differentiation. Studies in chimeric recipients demonstrated this was due to type I-IFN signaling in hematopoietic tissue. Consistent with this finding, administration of IFN-α during conditioning inhibited donor CD4(+) proliferation and differentiation. In contrast, CD8-dependent GVHD and GVL effects were enhanced when type I-IFN signaling was intact in the host or donor, respectively. This finding reflected the ability of type I-IFN to both sensitize host target tissue/leukemia to cell-mediated cytotoxicity and augment donor CTL function. These data confirm that type I-IFN plays an important role in defining the balance of GVHD and GVL responses and suggests that administration of the cytokine after BM transplantation could be studied prospectively in patients at high risk of relapse.


Subject(s)
Bone Marrow Transplantation/immunology , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , Interferon-alpha , Leukemia/immunology , Receptor, Interferon alpha-beta/deficiency , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cytotoxicity, Immunologic/drug effects , Female , Graft vs Host Disease/pathology , Graft vs Leukemia Effect/drug effects , Humans , Interferon-alpha/immunology , Interferon-alpha/pharmacology , Interferon-beta/immunology , Leukemia/mortality , Leukemia/pathology , Leukemia/therapy , Lymphocyte Activation/immunology , Major Histocompatibility Complex/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Minor Histocompatibility Antigens/immunology , Receptor, Interferon alpha-beta/immunology , Signal Transduction , Survival Rate , Transplantation, Homologous , Whole-Body Irradiation
12.
Blood ; 116(19): 3955-63, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20682855

ABSTRACT

The development of the mononuclear phagocyte system requires macrophage colony-stimulating factor (CSF-1) signaling through the CSF-1 receptor (CSF1R, CD115). We examined the effect of an antibody against CSF1R on macrophage homeostasis and function using the MacGreen transgenic mouse (csf1r-enhanced green fluorescent protein) as a reporter. The administration of a novel CSF1R blocking antibody selectively reduced the CD115(+)Gr-1(neg) monocyte precursor of resident tissue macrophages. CD115(+)Gr-1(+) inflammatory monocytes were correspondingly increased, supporting the view that monocytes are a developmental series. Within tissue, the antibody almost completely depleted resident macrophage populations in the peritoneum, gastrointestinal tract, liver, kidney, and skin, but not in the lung or female reproductive organs. CSF1R blockade reduced the numbers of tumor-associated macrophages in syngeneic tumor models, suggesting that these cells are resident type macrophages. Conversely, it had no effect on inflammatory monocyte recruitment in models, including lipopolysaccharide-induced lung inflammation, wound healing, peritonitis, and severe acute graft-versus-host disease. Depletion of resident tissue macrophages from bone marrow transplantation recipients actually resulted in accelerated pathology and exaggerated donor T-cell activation. The data indicate that CSF1R signaling is required only for the maturation and replacement of resident-type monocytes and tissue macrophages, and is not required for monocyte production or inflammatory function.


Subject(s)
Antibodies, Monoclonal/pharmacology , Inflammation/immunology , Macrophages/immunology , Monocytes/immunology , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/immunology , Animals , Cell Line, Tumor , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Graft vs Host Disease/therapy , Inflammation/pathology , Inflammation/therapy , Leukopoiesis/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monocytes/classification , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Rats
13.
Blood ; 116(5): 819-28, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20435882

ABSTRACT

The recent shift to the use of stem cells mobilized by granulocyte colony-stimulating factor (G-CSF) for hematopoietic transplantation has increased chronic graftversus-host disease (GVHD), although the mechanisms of this are unclear. We have found that G-CSF invokes potent type 17 rather than type 1 or type 2 differentiation. The amplification of interleukin-17 (IL-17) production by G-CSF occurs in both CD4 and CD8 conventional T cells and is dependent on, and downstream of, G-CSF-induced IL-21 signaling. Importantly, donor IL-17A controls the infiltration of macrophages into skin and cutaneous fibrosis, manifesting late after transplantation as scleroderma. Interestingly, donor CD8 T cells were the predominant source of IL-17A after transplantation and could mediate scleroderma independently of CD4 T cells. This study provides a logical explanation for the propensity of allogeneic stem cell transplantation to invoke sclerodermatous GVHD and suggests a therapeutic strategy for intervention.


Subject(s)
Bone Marrow Transplantation/adverse effects , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Mobilization/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Interleukin-17/physiology , Interleukins/physiology , Scleroderma, Localized/etiology , T-Lymphocyte Subsets/transplantation , Animals , Cell Differentiation/drug effects , Crosses, Genetic , Cytokines/biosynthesis , Female , Fibrosis , Humans , Interleukin-17/metabolism , Macrophages/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Radiation Chimera , Signal Transduction , Skin/immunology , Skin/pathology , Transplantation, Homologous/adverse effects
14.
Blood ; 116(2): 287-96, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20435883

ABSTRACT

Suppressor of cytokine signaling-3 (SOCS3) is the main intracellular regulator of signaling by granulocyte colony-stimulating factor, an immune-modulatory cytokine used to mobilize stem cells for transplantation. We have therefore studied the contribution of SOCS3 to the spectrum of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (SCT). Grafts from SOCS3(-/Deltavav) donor mice in which SOCS3 deficiency is restricted to the hematopoietic compartment had an augmented capacity to induce acute GVHD. With the use of SOCS3(-/DeltaLysM) and SOCS3(-/Deltalck) donors in which SOCS3 deficiency was restricted to the myeloid or T-cell lineage, respectively, we confirmed SOCS3 deficiency promoted acute GVHD mortality and histopathology within the gastrointestinal tract by effects solely within the donor T cell. SOCS3(-/Deltalck) donor T cells underwent enhanced alloantigen-dependent proliferation and generation of interleukin-10 (IL-10), IL-17, and interferon-gamma (IFNgamma) after SCT. The enhanced capacity of the SOCS3(-/Deltalck) donor T cell to induce acute GVHD was dependent on IFNgamma but independent of IL-10 or IL-17. Surprisingly, SOCS3(-/Deltalck) donor T cells also induced severe, transforming growth factor beta- and IFNgamma-dependent, sclerodermatous GVHD. Thus, the delivery of small molecule SOCS3 mimetics may prove to be useful for the inhibition of both acute and chronic GVHD.


Subject(s)
Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Suppressor of Cytokine Signaling Proteins/immunology , T-Lymphocytes/immunology , Animals , Cell Separation , Cytokines/biosynthesis , Female , Flow Cytometry , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Mice , Mice, Inbred C57BL , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/deficiency , Suppressor of Cytokine Signaling Proteins/genetics , T-Lymphocytes/metabolism , Transplantation, Homologous
15.
Blood ; 115(1): 122-32, 2010 Jan 07.
Article in English | MEDLINE | ID: mdl-19789388

ABSTRACT

Tumor necrosis factor (TNF) is a key cytokine in the effector phase of graft-versus-host disease (GVHD) after bone marrow transplantation, and TNF inhibitors have shown efficacy in clinical and experimental GVHD. TNF signals through the TNF receptors (TNFR), which also bind soluble lymphotoxin (LTalpha3), a TNF family member with a previously unexamined role in GVHD pathogenesis. We have used preclinical models to investigate the role of LT in GVHD. We confirm that grafts deficient in LTalpha have an attenuated capacity to induce GVHD equal to that seen when grafts lack TNF. This is not associated with other defects in cytokine production or T-cell function, suggesting that LTalpha3 exerts its pathogenic activity directly via TNFR signaling. We confirm that donor-derived LTalpha is required for graft-versus-leukemia (GVL) effects, with equal impairment in leukemic clearance seen in recipients of LTalpha- and TNF-deficient grafts. Further impairment in tumor clearance was seen using Tnf/Lta(-/-) donors, suggesting that these molecules play nonredundant roles in GVL. Importantly, donor TNF/LTalpha were only required for GVL where the recipient leukemia was susceptible to apoptosis via p55 TNFR signaling. These data suggest that antagonists neutralizing both TNF and LTalpha3 may be effective for treatment of GVHD, particularly if residual leukemia lacks the p55 TNFR.


Subject(s)
Graft vs Host Disease/immunology , Lymphotoxin-alpha/immunology , Animals , Apoptosis , Bone Marrow Transplantation , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Graft vs Host Disease/pathology , Inflammation Mediators/metabolism , Mice , Protein Multimerization , Receptors, Antigen, T-Cell/immunology , Receptors, Immunologic/administration & dosage , Receptors, Immunologic/immunology , Receptors, Tumor Necrosis Factor/administration & dosage , Receptors, Tumor Necrosis Factor/immunology , Solubility , Tumor Necrosis Factor-alpha/deficiency , Tumor Necrosis Factor-alpha/immunology
16.
Blood ; 113(22): 5644-9, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19336758

ABSTRACT

We have quantified the relative contribution of donor antigen-presenting cell populations to alloantigen presentation after bone marrow transplantation (BMT) by using transgenic T cells that can respond to host-derived alloantigen presented within the donor major histocompatibility complex. We also used additional transgenic/knockout donor mice and/or monoclonal antibodies that allowed conditional depletion of conventional dendritic cells (cDCs), plasmacytoid DC (pDCs), macrophages, or B cells. Using these systems, we demonstrate that donor cDCs are the critical population presenting alloantigen after BMT, whereas pDCs and macrophages do not make a significant contribution in isolation. In addition, alloantigen presentation was significantly enhanced in the absence of donor B cells, confirming a regulatory role for these cells early after transplantation. These data have major implications for the design of therapeutic strategies post-BMT, and suggest that cDC depletion and the promotion of B-cell reconstitution may be beneficial tools for the control of alloreactivity.


Subject(s)
Antigen-Presenting Cells/immunology , Bone Marrow Transplantation/immunology , Dendritic Cells/immunology , Isoantigens/immunology , Animal Experimentation , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , CD11 Antigens/genetics , Dendritic Cells/physiology , Female , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic
17.
Blood ; 113(23): 5999-6010, 2009 Jun 04.
Article in English | MEDLINE | ID: mdl-19369232

ABSTRACT

Invariant natural killer T cells (iNKT cells) have pivotal roles in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects. iNKT cells are activated through their T-cell receptors by glycolipid moieties (typically the alpha-galactosylceramide [alpha-GalCer] derivative KRN7000) presented within CD1d. We investigated the ability of modified alpha-GalCer molecules to differentially modulate alloreactivity and GVL. KRN7000 and the N-acyl variant, C20:2, were administered in multiple well-established murine models of allogeneic stem cell transplantation. The highly potent and specific activation of all type I NKT cells with C20:2 failed to exacerbate and in most settings inhibited GVHD late after transplantation, whereas effects on GVL were variable. In contrast, the administration of KRN7000 induced hyperacute GVHD and early mortality in all models tested. Administration of KRN7000, but not C20:2, was found to result in downstream interleukin (IL)-12 and dendritic cell (DC)-dependent natural killer (NK)- and conventional T-cell activation. Specific depletion of host DCs, IL-12, or donor NK cells prevented this pathogenic response and the induction of hyperacute GVHD. These data demonstrate the ability of profound iNKT activation to modulate both the innate and adaptive immune response via the DC-NK-cell interaction and raise concern for the use of alpha-GalCer therapeutically to modulate GVHD and GVL effects.


Subject(s)
Galactosylceramides/administration & dosage , Natural Killer T-Cells/drug effects , Stem Cell Transplantation , Animals , Cytokines/biosynthesis , Female , Galactosylceramides/chemistry , Galactosylceramides/pharmacology , Graft vs Leukemia Effect/drug effects , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Natural Killer T-Cells/immunology , Survival Rate , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Transplantation, Homologous , Treatment Outcome
18.
Nat Med ; 15(4): 436-41, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19330008

ABSTRACT

Granulocyte colony-stimulating factor (G-CSF) is often used to hasten neutrophil recovery after allogeneic bone marrow transplantation (BMT), but the clinical and immunological consequences evoked remain unclear. We examined the effect of G-CSF administration after transplantation in mouse models and found that exposure to either standard G-CSF or pegylated-G-CSF soon after BMT substantially increased graft-versus-host disease (GVHD). This effect was dependent on total body irradiation (TBI) rendering host dendritic cells (DCs) responsive to G-CSF by upregulating their expression of the G-CSF receptor. Stimulation of host DCs by G-CSF subsequently unleashed a cascade of events characterized by donor natural killer T cell (NKT cell) activation, interferon-gamma secretion and CD40-dependent amplification of donor cytotoxic T lymphocyte function during the effector phase of GVHD. Crucially, the detrimental effects of G-CSF were only present when it was administered after TBI conditioning and at a time when residual host antigen presenting cells were still present, perhaps explaining the conflicting and somewhat controversial clinical studies from the large European and North American BMT registries. These data have major implications for the use of G-CSF in disease states where NKT cell activation may have effects on outcome.


Subject(s)
Bone Marrow Transplantation/immunology , Granulocyte Colony-Stimulating Factor/therapeutic use , Killer Cells, Natural/immunology , Neutrophils/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Graft vs Host Disease/immunology , Humans , Interferon-gamma/physiology , Lymphocyte Activation/drug effects , Lymphocyte Transfusion , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Models, Animal , Neutrophils/drug effects , T-Lymphocytes/transplantation , Transplantation, Homologous/immunology , Whole-Body Irradiation
19.
J Immunol ; 182(2): 912-20, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19124734

ABSTRACT

The role of Ag presenting cell subsets in graft-versus-host disease (GVHD) remains unclear. We have thus examined the ability of plasmacytoid dendritic cells (pDC) to modulate transplant outcome. Surprisingly, host pDC were exquisitely sensitive to total body irradiation and were depleted before transplantation, thus allowing us to focus on donor pDC [corrected]. The depletion of all pDC from bone marrow grafts resulted in an acceleration of GVHD mortality while the depletion of mature pDC from G-CSF mobilized splenic grafts had no effect. Thus, donor bone marrow pDC, but not mature pDC contained within stem cell grafts attenuate acute GVHD. In the presence of GVHD, donor pDC completely failed to reconstitute although a CD11clow120G8+ precursor DC reconstituted in an exaggerated and transient manner. These cells expressed Flt-3, the macrophage colony stimulating factor receptor and, consistent with a common dendritic cell (DC) precursor, were capable of differentiation into pDC and conventional DC in vivo in the absence of GVHD. These precursors were MHC class II+ and CD80/86+ but lacked CD40, were actively presenting host Ag and inhibited GVHD and T cell proliferation in a contact-dependent fashion. These data demonstrate that GVHD prevents the maturation of pDC and instead promotes the generation of a suppressive precursor DC, further contributing to the state of immune paralysis after transplantation.


Subject(s)
Cell Differentiation/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Bone Marrow Transplantation/immunology , Bone Marrow Transplantation/pathology , Cells, Cultured , Dendritic Cells/transplantation , Female , Graft vs Host Disease/diagnosis , Immunophenotyping , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Spleen/immunology , Spleen/pathology , Stem Cell Transplantation , Stem Cells/immunology , Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...