Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 38(2): e3223, 2022 03.
Article in English | MEDLINE | ID: mdl-34738336

ABSTRACT

The Quality by Design (QbD) approach to the production of therapeutic monoclonal antibodies (mAbs) emphasizes an understanding of the production process ensuring product quality is maintained throughout. Current methods for measuring critical quality attributes (CQAs) such as glycation and glycosylation are time and resource intensive, often, only tested offline once per batch process. Process analytical technology (PAT) tools such as Raman spectroscopy combined with chemometric modeling can provide real time measurements process variables and are aligned with the QbD approach. This study utilizes these tools to build partial least squares (PLS) regression models to provide real time monitoring of glycation and glycosylation profiles. In total, seven cell line specific chemometric PLS models; % mono-glycated, % non-glycated, % G0F-GlcNac, % G0, % G0F, % G1F, and % G2F were considered. PLS models were initially developed using small scale data to verify the capability of Raman to measure these CQAs effectively. Accurate PLS model predictions were observed at small scale (5 L). At manufacturing scale (2000 L) some glycosylation models showed higher error, indicating that scale may be a key consideration in glycosylation profile PLS model development. Model robustness was then considered by supplementing models with a single batch of manufacturing scale data. This data addition had a significant impact on the predictive capability of each model, with an improvement of 77.5% in the case of the G2F. The finalized models show the capability of Raman as a PAT tool to deliver real time monitoring of glycation and glycosylation profiles at manufacturing scale.


Subject(s)
Bioreactors , Spectrum Analysis, Raman , Animals , CHO Cells , Cricetinae , Cricetulus , Glycosylation
2.
Bioprocess Biosyst Eng ; 43(8): 1415-1429, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32303846

ABSTRACT

Multiple process analytical technology (PAT) tools are now being applied in tandem for cell culture. Research presented used two in-line probes, capacitance for a dynamic feeding strategy and Raman spectroscopy for real-time monitoring. Data collected from eight batches at the 15,000 L scale were used to develop process models. Raman spectroscopic data were modelled using Partial Least Squares (PLS) by two methods-(1) use of the full dataset and (2) split the dataset based on the capacitance feeding strategy. Root mean square error of prediction (RMSEP) for the first model method of capacitance was 1.54 pf/cm and the second modelling method was 1.40 pf/cm. The second Raman method demonstrated results within expected process limits for capacitance and a 0.01% difference in total nutrient feed compared to the capacitance probe. Additional variables modelled using Raman spectroscopy were viable cell density (VCD), viability, average cell diameter, and viable cell volume (VCV).


Subject(s)
Batch Cell Culture Techniques , Models, Biological , Spectrum Analysis, Raman
3.
Biotechnol Prog ; 36(4): e2977, 2020 07.
Article in English | MEDLINE | ID: mdl-32012476

ABSTRACT

The Food and Drug Administration (FDA) initiative of Process Analytical Technology (PAT) encourages the monitoring of biopharmaceutical manufacturing processes by innovative solutions. Raman spectroscopy and the chemometric modeling tool partial least squares (PLS) have been applied to this aim for monitoring cell culture process variables. This study compares the chemometric modeling methods of Support Vector Machine radial (SVMr), Random Forests (RF), and Cubist to the commonly used linear PLS model for predicting cell culture components-glucose, lactate, and ammonia. This research is performed to assess whether the use of PLS as standard practice is justified for chemometric modeling of Raman spectroscopy and cell culture data. Model development data from five small-scale bioreactors (2 × 1 L and 3 × 5 L) using two Chinese hamster ovary (CHO) cell lines were used to predict against a manufacturing scale bioreactor (2,000 L). Analysis demonstrated that Cubist predictive models were better for average performance over PLS, SVMr, and RF for glucose, lactate, and ammonia. The root mean square error of prediction (RMSEP) of Cubist modeling was acceptable for the process concentration ranges of glucose (1.437 mM), lactate (2.0 mM), and ammonia (0.819 mM). Interpretation of variable importance (VI) results theorizes the potential advantages of Cubist modeling in avoiding interference of Raman spectral peaks. Predictors/Raman wavenumbers (cm-1 ) of interest for individual variables are X1139-X1141 for glucose, X846-X849 for lactate, and X2941-X2943 for ammonia. These results demonstrate that other beneficial chemometric models are available for use in monitoring cell culture with Raman spectroscopy.


Subject(s)
Batch Cell Culture Techniques , Culture Media/metabolism , Metabolome/genetics , Spectrum Analysis, Raman , Animals , CHO Cells/chemistry , CHO Cells/metabolism , Cricetinae , Cricetulus , Culture Media/chemistry
4.
Biotechnol Bioeng ; 117(1): 146-156, 2020 01.
Article in English | MEDLINE | ID: mdl-31631327

ABSTRACT

Raman spectroscopy is a robust, well-established tool utilized for measuring important cell culture process variables for example, feed, metabolites, and biomass in real-time. This study further expands the functionality of in-line Raman spectroscopy coupled with partial least squares (PLS) regression modelling to develop a pH measurement tool. Cell line specific models were developed to enhance the robustness for processes with different pH setpoints, deadbands, and cellular metabolism. The modelling strategy further improved robustness by reducing the temporal complexity of pH shifts by splitting data sets into two time zones reflective of major changes in pH. In addition, models were developed to assess if lactate and partial pressure of carbon dioxide (pCO2 ) could be used in a PLS model for pH. Splitting the data sets into early and late for the process resulted in errors of 0.035 pH and 0.034 pH for the two respective Raman cell lines models which was within acceptance criteria. The lactate and pCO2 PLS model with values provided by Raman models had a further 0.001 pH error reduction. This study illustrates the potential to eliminate off-line samples to correct for in-line measurements of pH and further illustrates the capabilities of Raman to measure additional process variables.


Subject(s)
Bioreactors , Cell Culture Techniques , Hydrogen-Ion Concentration , Spectrum Analysis, Raman/methods , Animals , CHO Cells , Carbon Dioxide/metabolism , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cricetinae , Cricetulus , Lactic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...