Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 18(9): e1010840, 2022 09.
Article in English | MEDLINE | ID: mdl-36166467

ABSTRACT

Giardia duodenalis causes giardiasis, a major diarrheal disease in humans worldwide whose treatment relies mainly on metronidazole (MTZ) and albendazole (ABZ). The emergence of ABZ resistance in this parasite has prompted studies to elucidate the molecular mechanisms underlying this phenomenon. G. duodenalis trophozoites convert ABZ into its sulfoxide (ABZSO) and sulfone (ABZSOO) forms, despite lacking canonical enzymes involved in these processes, such as cytochrome P450s (CYP450s) and flavin-containing monooxygenases (FMOs). This study aims to identify the enzyme responsible for ABZ metabolism and its role in ABZ resistance in G. duodenalis. We first determined that the iron-containing cofactor heme induces higher mRNA expression levels of flavohemoglobin (gFlHb) in Giardia trophozoites. Molecular docking analyses predict favorable interactions of gFlHb with ABZ, ABZSO and ABZSOO. Spectral analyses of recombinant gFlHb in the presence of ABZ, ABZSO and ABZSOO showed high affinities for each of these compounds with Kd values of 22.7, 19.1 and 23.8 nM respectively. ABZ and ABZSO enhanced gFlHb NADH oxidase activity (turnover number 14.5 min-1), whereas LC-MS/MS analyses of the reaction products showed that gFlHb slowly oxygenates ABZ into ABZSO at a much lower rate (turnover number 0.01 min-1). Further spectroscopic analyses showed that ABZ is indirectly oxidized to ABZSO by superoxide generated from the NADH oxidase activity of gFlHb. In a similar manner, the superoxide-generating enzyme xanthine oxidase was able to produce ABZSO in the presence of xanthine and ABZ. Interestingly, we find that gFlHb mRNA expression is lower in albendazole-resistant clones compared to those that are sensitive to this drug. Furthermore, all albendazole-resistant clones transfected to overexpress gFlHb displayed higher susceptibility to the drug than the parent clones. Collectively these findings indicate a role for gFlHb in ABZ conversion to its sulfoxide and that gFlHb down-regulation acts as a passive pharmacokinetic mechanism of resistance in this parasite.


Subject(s)
Anthelmintics , Giardia lamblia , Albendazole/chemistry , Albendazole/pharmacokinetics , Animals , Anthelmintics/pharmacology , Biotransformation , Chromatography, Liquid , Cytochromes/metabolism , Flavins/metabolism , Giardia lamblia/genetics , Giardia lamblia/metabolism , Heme/metabolism , Humans , Iron , Metronidazole/pharmacology , Mixed Function Oxygenases/metabolism , Molecular Docking Simulation , RNA, Messenger/metabolism , Sulfones , Sulfoxides/metabolism , Superoxides , Tandem Mass Spectrometry , Trophozoites/metabolism , Xanthine Oxidase/metabolism , Xanthines
2.
Protein Expr Purif ; 157: 70-85, 2019 05.
Article in English | MEDLINE | ID: mdl-30708035

ABSTRACT

NMR is an important method in the structural and functional characterization of proteins, but such experiments typically require isotopic labelling because of the low natural abundance of the nuclei of interest. Isotope-labelled protein for NMR experiments is typically obtained from IPTG-inducible bacterial expression systems in a minimal media that contains labelled carbon or nitrogen sources. Optimization of expression conditions is crucial yet challenging; large amounts of labelled protein are desired, yet protein yields are lower in minimal media, while the labelled precursors are expensive. Faced with these challenges there is a growing body of literature that apply innovative methods of induction to optimize the yield of isotope-labelled protein. A promising technique is lactose-driven auto-induction as it mitigates user intervention and can lead to higher protein yields. This review assesses the current advances and limitations surrounding the ability of researchers to isotope label proteins using auto-induction, and it identifies key components for optimization.


Subject(s)
Isotope Labeling/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Lac Operon , Lactose/genetics , Lactose/metabolism , Proteins/genetics , Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Environ Toxicol Chem ; 29(8): 1669-77, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20821618

ABSTRACT

Perfluorocarboxylic acids (PFCAs) of chain length greater than seven carbon atoms bioconcentrate in the livers of fish. However, a mechanistic cause for the empirically observed increase in the bioconcentration potential of PFCAs as a function of chain length has yet to be determined. To this end, recombinant rat liver fatty acid-binding protein (L-FABP) was purified, and its interaction with PFCAs was characterized in an aqueous system at pH 7.4. Relative binding affinities of L-FABP with PFCAs of carbon chain lengths of five to nine were established fluorimetrically. The energetics, mechanism, and stoichiometry of the interaction of perfluorooctanoic acid (PFOA) with L-FABP were examined further by isothermal titration calorimetry (ITC) and electrospray ionization combined with tandem mass spectrometry (ESI-MS/MS). Perfluorooctanoic acid was shown to bind to L-FABP with an affinity approximately an order of magnitude less than the natural ligand, oleic acid, and to have at least 3:1 PFOA:L-FABP stoichiometry. Two distinct modes of PFOA binding to L-FABP were observed by ESI-MS/MS analysis; in both cases, PFOA binds solely as the neutral species under typical physiological pH and aqueous concentrations of the anion. A comparison of their chemical and physical properties with other well-studied biologically relevant chemicals showed that accumulation of PFCAs in proteins as the neutral species is predictable. For example, the interaction of PFOA with L-FABP is almost identical to that of the acidic ionizing drugs ketolac, ibuprofen, and warfarin that show specificity to protein partitioning with a magnitude that is proportional to the K(OW) (octanol-water partitioning) of the neutral species. The experimental results suggest that routine pharmacochemical models may be applicable to predicting the protein-based bioaccumulation of long-chain PFCAs.


Subject(s)
Fluorocarbons/metabolism , Liver/metabolism , Animals , Caprylates/chemistry , Caprylates/metabolism , Carboxylic Acids , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/metabolism , Fishes/metabolism , Fluorocarbons/chemistry , Liver/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
4.
J Inorg Biochem ; 103(7): 1102-12, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19539996

ABSTRACT

The proximal ligand of thiolate-coordinated heme proteins is crucial for the activation of the oxygen molecule and hydroxylation of substrates. In nitric oxide synthases (NOSs), the heme axial cysteine ligand forms a hydrogen bond to the side chain indole nitrogen of a tryptophan residue. Resonance Raman spectroscopy was used to probe W56F and W56Y variants of the NOS of Staphylococcus aureus (saNOS) and the analogous W180 variants of the endothelial NOS oxygenase domain (eNOSox). We show that the variants displayed lower nu(Fe-NO) and nu(Fe-CO) frequencies indicating that these mutations increased the electron density on the axial cysteine in their Fe(III)NO and Fe(II)CO complexes. We also show by UV-visible spectroscopy that the Fe(II)CO complexes of the variants displayed a red-shifted Soret optical transition in addition to the lower nu(Fe-CO) thus establishing that these properties are sensitive indicators of the modulation of the basicity of the axial cysteine. We infer, based on its spectroscopic properties, that ferrous eNOSox W180Y saturated with l-arginine and tetrahydrobiopterin forms a tyrosine-cysteine hydrogen bond when bound to CO. Evidence for such a hydrogen bond was not obtained for the Fe(III)NO protein nor for the analogous saNOS variant. These mutations reveal interesting differences in the response of NOS isotypes to analogous mutations at conserved residues and clearly show that the heme-Fe to cysteine sigma bond is modulated by the Cys-Trp hydrogen bond in NOSs. These studies serve as a basis to gain information on the role played by this hydrogen bond in oxygen activation in this class of enzymes.


Subject(s)
Cysteine/chemistry , Heme/chemistry , Nitric Oxide Synthase Type III/chemistry , Nitric Oxide/metabolism , Staphylococcus aureus/enzymology , Tryptophan/chemistry , Animals , Cloning, Molecular , Endothelium/enzymology , Endothelium/metabolism , Hydrogen Bonding , Mutation , Nitric Oxide/chemistry , Nitric Oxide Synthase Type III/genetics , Spectrum Analysis, Raman , Tryptophan/genetics
5.
Biochemistry ; 44(7): 2276-83, 2005 Feb 22.
Article in English | MEDLINE | ID: mdl-15709740

ABSTRACT

The inducible nitric oxide synthase core oxygen domain (iNOS(COD)) is a homodimeric protein complex of ca. 100 kDa. In this work, the subunit disassembly and unfolding of the protein following a pH jump from 7.5 to 2.8 were monitored by on-line rapid mixing in conjunction with electrospray (ESI) time-of-flight mass spectrometry. Various protein species become populated during the denaturation process. These can be distinguished by their ligand binding behavior, and by the different charge states that they produce during ESI. Detailed intensity-time profiles were obtained for all of these species, and the kinetics were subjected to a global analysis which allows a model of the denaturation process to be developed. The data are described well by three relaxation times (tau(1) = 0.36 s, tau(2) = 0.62 s, and tau(3) = 3.3 s), each of which has a characteristic amplitude spectrum. The initial step of the reaction is the disruption of the iNOS(COD) dimer, to generate heme-bound monomeric species in various degrees of unfolding. This first step is accompanied by the loss of two tetrahydrobiopterin cofactors. Subsequent heme loss generates monomeric apoproteins exhibiting various degrees of unfolding. In addition, the formation of proteins that are bound to two heme groups is observed. A subpopulation of holo monomers undergoes substantial unfolding while retaining contact with the heme cofactor. Together with previous studies, the results of this work suggest that the occurrence of complex reaction mechanisms involving several short-lived intermediates is a common feature for the denaturation of large multiprotein complexes.


Subject(s)
Nitric Oxide Synthase/chemistry , Oxygenases/chemistry , Protein Folding , Animals , Dimerization , Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/metabolism , Hydrogen-Ion Concentration , Kinetics , Mice , Models, Chemical , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Oxygenases/metabolism , Protein Conformation , Protein Denaturation , Protein Structure, Tertiary , Spectrometry, Mass, Electrospray Ionization/methods , Time Factors
6.
J Am Soc Mass Spectrom ; 15(5): 629-38, 2004 May.
Article in English | MEDLINE | ID: mdl-15121191

ABSTRACT

The investigation of protein quaternary structure, protein-cofactor, and protein-ligand interactions by mass spectrometry is often limited by the fragility of such interactions under experimental conditions. To develop more gentle conditions of perhaps general use, we used as a model for study the oxygenase domain of murine inducible nitric oxide synthase (iNOS), which is homodimeric, binds heme and tetrahydrobiopterin H(4)B cofactors, and the substrate L-arginine. The energetics of the collisions in q2 and in the lens region of the mass spectrometer were manipulated for varying the degree of solvation around the non-covalently bound ions. Furthermore, the number of low-energy collisions in the collision cell of the instrument was varied, focusing and dampening the ion beam. Under gentle source collision conditions, and using multiple low-energy collisions in the collision cell of the mass spectrometer, dimers of the iNOS oxygenase domain containing heme, H(4)B, and arginine were observed intact after electrospraying at pH values near neutrality; a mutant of this protein (Trp188 --> Phe) was monomeric and did not bind cofactors. The pH dependence of the iNOS oxygenase domain under acidic conditions was also studied; while heme remained bound to the protein between pH 2.5 and 4.0, the dimeric structure was disrupted. Our findings confirm that non-covalently bound macromolecular complexes are retained and observable using electrospray mass spectrometry under the appropriate experimental conditions.


Subject(s)
Nitric Oxide Synthase/chemistry , Oxygenases/chemistry , Cold Temperature , Dimerization , Hydrogen-Ion Concentration , Mutation , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase Type II , Oxygenases/genetics , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...