Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 1793, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32286291

ABSTRACT

In high-energy physics, the Higgs field couples to gauge bosons and fermions and gives mass to their elementary excitations. Experimentally, such couplings can be inferred from the decay product of the Higgs boson, i.e., the scalar (amplitude) excitation of the Higgs field. In superconductors, Cooper pairs bear a close analogy to the Higgs field. Interaction between the Cooper pairs and other degrees of freedom provides dissipation channels for the amplitude mode, which may reveal important information about the microscopic pairing mechanism. To this end, we investigate the Higgs (amplitude) mode of several cuprate thin films using phase-resolved terahertz third harmonic generation (THG). In addition to the heavily damped Higgs mode itself, we observe a universal jump in the phase of the driven Higgs oscillation as well as a non-vanishing THG above Tc. These findings indicate coupling of the Higgs mode to other collective modes and potentially a nonzero pairing amplitude above Tc.

2.
Chem Commun (Camb) ; 51(64): 12740-3, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26120783

ABSTRACT

A novel 1D hybrid salt (MQ)[CuBr2]∞ (MQ = N-methylquinoxalinium) is reported. Structural, spectroscopic and magnetic investigations reveal a minimal Cu(II) doping of less than 0.1%. However it is not possible to distinguish Cu(I) and Cu(II). The unusually close packing of the organic moieties and the dark brown colour of the crystals suggest a defect electronic structure.

3.
Proc Natl Acad Sci U S A ; 108(23): 9346-9, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21606341

ABSTRACT

In order to understand the origin of high-temperature superconductivity in copper oxides, we must understand the normal state from which it emerges. Here, we examine the evolution of the normal state electronic excitations with temperature and carrier concentration in Bi(2)Sr(2)CaCu(2)O(8+δ) using angle-resolved photoemission. In contrast to conventional superconductors, where there is a single temperature scale T(c) separating the normal from the superconducting state, the high-temperature superconductors exhibit two additional temperature scales. One is the pseudogap scale T(∗), below which electronic excitations exhibit an energy gap. The second is the coherence scale T(coh), below which sharp spectral features appear due to increased lifetime of the excitations. We find that T(∗) and T(coh) are strongly doping dependent and cross each other near optimal doping. Thus the highest superconducting T(c) emerges from an unusual normal state that is characterized by coherent excitations with an energy gap.


Subject(s)
Chemical Phenomena , Copper/chemistry , Hot Temperature , Electric Conductivity , Electrons , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...