Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8625, 2024 04 14.
Article in English | MEDLINE | ID: mdl-38616193

ABSTRACT

While particle therapy has been used for decades for cancer treatment, there is still a lack of information on the molecular mechanisms of biomolecules radiolysis by accelerated ions. Here, we examine the effects of accelerated protons on highly concentrated native myoglobin, by means of Fourier transform infrared and UV-Visible spectroscopies. Upon irradiation, the secondary structure of the protein is drastically modified, from mostly alpha helices conformation to mostly beta elements at highest fluence. These changes are accompanied by significant production of carbon monoxide, which was shown to come from heme degradation under irradiation. The radiolytic yields of formation of denatured protein, carbon monoxide, and of heme degradation were determined, and found very close to each other: G+denatured Mb ≈ G+CO ≈ G-heme = 1.6 × 10-8 ± 0.1 × 10-8 mol/J = 0.16 ± 0.01 species/100 eV. The denaturation of the protein to a beta structure and the production of carbon monoxide under ion irradiation are phenomena that may play an important role in the biological effects of ionizing radiation.


Subject(s)
Myoglobin , Protons , Carbon Monoxide , Gels , Heme
2.
Radiat Res ; 201(4): 287-293, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38407439

ABSTRACT

We report the dose rate dependence of radiation chemical yields (G value) of water radiolysis products under clinical energy protons (230 MeV) to understand mechanisms of the FLASH radiotherapy performed at ultra-high dose rate (>40 Gy/s). The G value of 7-hydoroxy-coumarin-3-carboxylic acid (7OH-C3CA) produced by reactions of coumarin-3-carboxylic acid (C3CA) with OH radicals and oxygen is evaluated by fluorescence method. Also, those of hydrated electrons and hydrogen peroxide are derived by absorption method using Saltzman and Ghomley techniques, respectively. Both G values of 7OH-C3CA and hydrated electrons decrease with increasing dose rate. The relative evolution of 7OH-C3CA is -39 ± 2% between 0.1 and 50 Gy/s. This value is higher than that of hydrated electrons, measured at -21 ± 4%. The G value of hydrogen peroxide in ultra-pure water also decreases with increasing dose rate. In comparison to these findings, we represent the increase of the G value of hydrogen peroxide with increasing dose rate in the mixture solution of MeOH and NaNO3, which act as scavengers of OH radicals and hydrated electrons, respectively, that decompose hydrogen peroxide. This finding indicates that a complex track structure can be expected with increasing dose rate and the reduction of OH radicals by forming hydrogen peroxide would be related to the sparing effect of healthy tissues.


Subject(s)
Hydrogen Peroxide , Protons , Electrons , Water/chemistry
3.
Sci Rep ; 12(1): 8957, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35624130

ABSTRACT

The aim of this work is to estimate the biological effect of targeted radionuclide therapy using Cu-64, which is a well-known Auger electron emitter. To do so, we evaluate the absorbed dose of emitted particles from Cu-64 using the Geant4-DNA Monte Carlo simulation toolkit. The contribution of beta particles to the absorbed dose is higher than that of Auger electrons. The simulation result agrees with experimental ones evaluated using coumarin-3-carboxylic acid chemical dosimeter. The simulation result is also in good agreement with previous ones obtained using fluorescent nuclear track detector. From the results of present simulation (i.e., absorbed dose estimation) and previous biological experiments using two cell lines (i.e., evaluation of survival curves), we have estimated the relative biological effectiveness (RBE) of Cu-64 emitted particles on CHO wild-type cells and xrs5 cells. The RBE of xrs5 cells exposed to Cu-64 is almost equivalent to that with gamma rays and protons and C ions. This result indicates that the radiosensitivity of xrs5 cells is independent of LET. In comparison to this, the RBE on CHO wild-type cells exposed to Cu-64 is significantly higher than gamma rays and almost equivalent to that irradiated with C ions with a linear energy transfer of 70 keV/µm.


Subject(s)
Copper Radioisotopes , Radiopharmaceuticals , Animals , CHO Cells , Cricetinae , DNA
4.
Sci Rep ; 11(1): 1524, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452450

ABSTRACT

We evaluate the track segment yield G' of typical water radiolysis products (eaq-, ·OH and H2O2) under heavy ions (He, C and Fe ions) using a Monte Carlo simulation code in the Geant4-DNA. Furthermore, we reproduce experimental results of ·OH of He and C ions around the Bragg peak energies (< 6 MeV/u). In the relatively high energy region (e.g., > 10 MeV/u), the simulation results using Geant4-DNA have agreed with experimental results. However, the G-values of water radiolysis species have not been properly evaluated around the Bragg peak energies, at which high ionizing density can be expected. Around the Bragg peak energy, dense continuous secondary products are generated, so that it is necessary to simulate the radical-radical reaction more accurately. To do so, we added the role of secondary products formed by irradiation. Consequently, our simulation results are in good agreement with experimental results and previous simulations not only in the high-energy region but also around the Bragg peak. Several future issues are also discussed regarding the roles of fragmentation and multi-ionization to realize more realistic simulations.


Subject(s)
Heavy Ion Radiotherapy/methods , Hydrogen Peroxide/chemistry , Water/chemistry , Computer Simulation , DNA/chemistry , Electrons , Heavy Ions , Linear Energy Transfer/physiology , Models, Chemical , Monte Carlo Method , Physical Phenomena
5.
J Phys Chem B ; 121(3): 497-507, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28045263

ABSTRACT

Ultrathin layers (<20 nm) of pBR322 plasmid DNA were deposited onto 2.5 µm thick polyester films and exposed to proton Bragg-peak energies (90-3000 keV) at various fluences. A quantitative analysis of radio-induced DNA damage is reported here in terms of single- and double-strand breaks (SSB and DSB, respectively). The corresponding yields as well as G-values and the cross sections exhibit fairly good agreement with the rare available data, stemming from close experimental conditions, namely, based on α particle irradiation. SSB/DSB rates appear to be linear when plotted against linear energy transfer (LET) in the whole energy range studied. All the data present a maximum in the 150-200 keV energy range; as for LET, it peaks at 90 keV. We also show that fragmentation starts to be significant for proton fluences greater than 1 × 1011 cm-2 at the Bragg-peak energies. Finally, we determine the average proton track radial extension, rmax, corresponding to an occupation probability of 100% DSB in the Bragg-peak region. The rmax values determined are in excellent agreement with the radial extensions of proton tracks determined by simulation approaches in water. When plotted as a function of LET, both SSB and DSB cross sections bend back at high LETs.


Subject(s)
DNA Breaks, Double-Stranded , DNA Breaks, Single-Stranded , DNA/chemistry , Protons , Linear Energy Transfer , Plasmids , Polyesters/chemistry
7.
Biochemistry ; 49(20): 4297-9, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20415454

ABSTRACT

A new footprinting method for mapping protein interactions has been developed, using tritium as a radioactive label. As residues involved in an interaction are less labeled when the complex is formed, they can be identified via comparison of the tritium incorporation of each residue of the bound protein with that of the unbound one. Application of this footprinting method to the complex formed by the histone H3 fragment H3(122-135) and the protein hAsf1A(1-156) afforded data in good agreement with NMR results.


Subject(s)
Isotope Labeling/methods , Protein Footprinting/methods , Proteins/metabolism , Amino Acid Sequence , Efficiency , Histones/chemistry , Histones/metabolism , Humans , Models, Biological , Nuclear Magnetic Resonance, Biomolecular , Nucleosomes/chemistry , Nucleosomes/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Interaction Mapping/methods , Proteins/chemistry , Sensitivity and Specificity , Tritium
8.
Biochimie ; 91(10): 1321-3, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19285537

ABSTRACT

The design of artificial hemoproteins that could lead to new biocatalysts for selective oxidation reactions of organic compounds presents a huge interest especially in pharmacology, both for a better understanding of the metabolic profile of drugs and for the synthesis of enantiomerically pure molecules that could be involved in the design of drugs. The present results show that the so-called "host-guest strategy" that involves the non-covalent incorporation of anionic water-soluble iron-porphyrins into xylanase A from Streptomyces lividans, a low cost protein, leads to such an artificial hemoprotein that is able to perform the stereoselective oxidation of sulfides.


Subject(s)
Hemeproteins/chemical synthesis , Hemeproteins/metabolism , Hemeproteins/chemistry , Models, Molecular , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...