Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 630(Pt B): 924-933, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36370643

ABSTRACT

HYPOTHESIS: Due to their unique quantum yield and photostability performances, quantum nanoplatelets are very promising building blocks for future generations of displays. The directed assembly of such colloidal nano-objects in the shape of micro-pixels is thus the next mandatory step to reach this goal. Selectively trapping them on electrostatically charged patterns by nanoxerography could be a versatile and appealing strategy but requires a full understanding of the assembly mechanisms in order to make the most of their integration. EXPERIMENTS: We propose an experimental platform based on a smart resealable microfluidic chip coupled to an inverted optical fluorescence microscope and a high-speed camera for in situ access of such assembly mechanisms, using CdSe/CdZnS quantum nanoplatelets as model nano-objects. The photoluminescence signal of the nanoplatelet patterns is thus recorded in real time during their assembly and data extracted after image processing. FINDINGS: The coupling of experimental results and numerical simulations evidences the main role of advection at the origin of this directed nanoparticle trapping. Deep understanding of the involved mechanisms and tuning of experimental parameters allow to make high resolution quantum nanoplatelet based micro-pixels with a fine control of their lateral and vertical dimensions.

2.
J Colloid Interface Sci ; 582(Pt B): 1243-1250, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32950840

ABSTRACT

HYPOTHESIS: The capability of making 3D directed assembly of colloidal nanoparticles on surfaces, instead of 2D one, is of major interest to generate, tailor, and enhance their original functionalities. The nanoxerography technique, i.e. electrostatic trapping of nanoparticles on charged patterns, showed such 3D assembly potentialities but is presently restricted to polarizable nanoparticles with a diameter superior to 20 nm. Hence, it should be possible to exploit a generic approach based on hybrid systems using larger nanoparticles as cargos to anchor smaller ones. EXPERIMENTS: A synthesis of hybrid nanoparticles in a raspberry-like configuration was performed using 50 nm SiO2 nanoparticles and photoluminescent 3-5 nm InP@ZnS (visible emission) or PbS (infrared emission) nanoparticles. Complete topographical and photoluminescent characterizations were carried out on hybrid nanoparticle patterns assembled by nanoxerography and systematically compared to patterns obtained from single photoluminescent nanoparticles. FINDINGS: The synthesis approach is generic. Every hybrid nanoparticle system has led to 3D assemblies with improved photoluminescent signals compared to mono/bilayered assemblies. Straightforward applications for anti-counterfeiting are illustrated. The versatility of the proposed concept is expected to be applied to other nanoparticles to make the most of their magnetic, catalytic, optical etc. properties in a wide range of applications, sensors and devices.

4.
Adv Mater ; 28(9): 1760-4, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26671783

ABSTRACT

Spherical silica xerogels are efficient acoustic Mie resonators. When these sub-wavelength inclusions are dispersed in a matrix, the final metafluid may display a negative acoustic refractive index upon a set of precise constraints concerning material properties, concentration, size, and dispersity of the inclusions. Because xerogels may sustain both pressure and shear waves, several bands with negative index can be tailored.

5.
J Acoust Soc Am ; 133(4): 1996-2003, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23556570

ABSTRACT

The influence of size polydispersity on the resonant acoustic properties of dilute emulsions, made of fluorinated-oil droplets, is quantitatively investigated. Ultrasound attenuation and dispersion measurements on various samples with controlled size polydispersities, ranging from 1% to 13%, are found to be in excellent agreement with predictions based on the independent scattering approximation. By relating the particle-size distribution of the synthesized emulsions to the quality factor of the predicted multipolar resonances, the number of observable acoustic resonances is shown to be imposed by the sample polydispersity. These results are briefly discussed into the context of metamaterials for which scattering resonances are central to their effective properties.


Subject(s)
Fluorocarbons/chemistry , Sound , Ultrasonics , Emulsions , Models, Theoretical , Motion , Oils , Particle Size , Pressure , Scattering, Radiation , Signal Processing, Computer-Assisted , Spectrum Analysis , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...