Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Pract Oncol Radiother ; 26(6): 1019-1028, 2021.
Article in English | MEDLINE | ID: mdl-34992876

ABSTRACT

BACKGROUND: The aim of the study was to investigate the dosimetric feasibility of using optically stimulated luminescence dosimeters (OSLD) and an electronic portal imaging device (EPID) for central axis (CA X) and off-axis (OAX) dosimetric leaf gap (DLG) measurement. MATERIALS AND METHODS: The Clinac 2100C/D linear accelerator equipped with Millennium-120 multileaf collimator (MLC) and EPID was utilized for this study. The DLG values at CA X and ± 1 cm OAX (1 cm superior and inferior to the CA X position, respectively along the plane perpendicular to MLC motion) were measured using OSLD (DLGOSLD) and validated using ionization chamber dosimetry (DLGICD). The two-dimensional DLG map (2D DLGEPID) was derived from the portal images of the DLG plan using a custom-developed software application that incorporated sliding aperture-specific correction factors. RESULTS: DLGOSLD and DLGICD, though measured with diverse setup in different media, showed similar variation both at CA X and ± 1 cm OAX positions. The corresponding DLGEPID values derived using aperture specific corrections were found to be in agreement with DLGOSLD and DLGICD. The 2D DLGEPID map provides insight into the varying patterns of the DLG with respect to each leaf pair at any position across the exposed field. CONCLUSIONS: Commensurate results of DLGOSLD with DLGICD values have proven the efficacy of OSLD as an appropriate dosimeter for DLG measurement. The 2D DLGEP ID map opens a potential pathway to accurately model the rounded-leaf end transmission with discrete leaf-specific DLG values for commissioning of a modern treatment planning system.

2.
Phys Med ; 62: 129-139, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31153392

ABSTRACT

PURPOSE: To investigate the efficacy of using cone beam CT with extended longitudinal field-of-view (CBCTeLFOV) for image guided adaptive radiotherapy (IGART). METHODS: The protocol acquires two CBCT scans with a linear translation of treatment couch in the patient plane, allowing a 1 cm penumbral overlap (i.e. cone beam abutment) and fused as a single DICOM set (CBCTeLFOV) using a custom-developed software script (coded in MatLab®) for extended localization. Systemic validation was performed to evaluate the geometric and Hounsfield Units accuracy at the overlapping regions of the CBCTeLFOV using a Catphan®-504 phantom. Two case studies were used to illustrate the CBCTeLFOV-based IGART workflow in terms of dosimetric and clinical perspectives. Segmentation accuracy/association between repeat CT (re-CT) and CBCTeLFOV was evaluated. Moreover, the efficacy of the CBCTeLFOV image data in deformable registration was also described. RESULTS: Slice geometry, spatial resolution, line profiles and HU accuracy in the overlapping regions of the CBCTeLFOV yielded identical results when compared with reference CBCT. In patient studies, the dice-similarity-coefficient evaluation showed a good association (>0.9) between re-CT and CBCTeLFOV. Dosimetric analysis of the CBCTeLFOV-based adaptive re-plans showed excellent agreement with re-CT based re-plans. Moreover, a similar and consistent pattern of results was also observed using deformed image data (initial planning CT deformed to CBCTeLFOV) with extended longitudinal projection and the same frame-of-reference as that of the CBCTeLFOV. CONCLUSION: Utilization of CBCTeLFOV proves to be clinically appropriate and enables accurate prediction of geometric and dosimetric consequences within the planned course of treatment. The ability to compute CBCTeLFOV-based treatment plans equivalent to re-CT promises a potential improvement in IGART practice.


Subject(s)
Cone-Beam Computed Tomography , Radiotherapy, Image-Guided/methods , Humans , Male , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/radiotherapy , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
3.
Rep Pract Oncol Radiother ; 23(2): 126-135, 2018.
Article in English | MEDLINE | ID: mdl-29556141

ABSTRACT

BACKGROUND AND AIM: The practicability of computing dose calculation on cone beam CT (CBCT) has been widely investigated. In most clinical scenarios, the craniocaudal scanning length of CBCT is found to be inadequate for localization. This study aims to explore extended tomographic localization and adaptive dose calculation strategies using Hounsfield unit (HU) corrected CBCT image sets. MATERIALS AND METHODS: Planning CT (pCT) images of the Rando phantom (T12-to-midthigh) were acquired with pelvic-protocol using Biograph CT-scanner. Similarly, half-fan CBCT were acquired with fixed parameters using Clinac2100C/D linear accelerator integrated with an on-board imager with 2-longitudinal positions of the table. For extended localization and dose calculation, two stitching strategies viz., one with "penumbral-overlap" (S1) and the other with "no-overlap" (S2) and a local HU-correction technique were performed using custom-developed MATLAB scripts. Fluence modulated treatment plans computed on pCT were mapped with stitched CBCT and the dosimetric analyses such as dose-profile comparison, 3D-gamma (γ) evaluation and dose-volume histogram (DVH) comparison were performed. RESULTS: Localizing scanning length of CBCT was extended by up to 15 cm and 16 cm in S1 and S2 strategies, respectively. Treatment plan mapping resulted in minor variations in the volumes of delineated structures and the beam centre co-ordinates. While the former showed maximum variations of -1.4% and -1.6%, the latter showed maximum of 1.4 mm and 2.7 mm differences in anteroposterior direction in S1 and S2 protocols, respectively. Dosimetric evaluations viz., dose profile and DVH comparisons were found to be in agreement with one another. In addition, γ-evaluation results showed superior pass-rates (≥98.5%) for both 3%/3 mm dose-difference (DD) and distance-to-agreement (DTA) and 2%/2 mm DD/DTA criteria with desirable dosimetric accuracy. CONCLUSION: Cone beam tomographic stitching and local HU-correction strategies developed to facilitate extended localization and dose calculation enables routine adaptive re-planning while circumventing the need for repeated pCT.

4.
J Med Phys ; 42(3): 116-122, 2017.
Article in English | MEDLINE | ID: mdl-28974855

ABSTRACT

PURPOSE: This study focuses on incorporation of a solitary dynamic portal (SDP) in conformal planning for postmastectomy radiotherapy (PMRT) with nodal regions with an intention to overcome the treatment planning limitations imposed by conventional techniques. MATERIALS AND METHODS: Twenty-four patients who underwent surgical mastectomy followed by PMRT were included in this study. Initially, a treatment plan comprising tangential beams fitted to beam's-eye-view (BEV) of chest wall (CW) and a direct anterior field fitted to BEV of nodal region, both sharing a single isocenter was generated using Eclipse treatment planning system. Multiple field-in-fields with optimum beam weights (5% per field) were added primarily from the medial tangent, fitted to BEV of entire target volume, and finally converted into a dynamic portal. Dosimetric analysis for the treatment plans and fluence verification for the dynamic portals were performed. RESULTS AND DISCUSSION: Conformal plans with SDP showed excellent dose coverage (V95%>95%), higher degree of tumor dose conformity (≤1.25) and homogeneity (≤0.12) without compromising the organ at risk sparing for PMRT with nodal region. Treatment plans with SDP considerably reduced the lower isodose spread to the ipsilateral lung, heart, and healthy tissue without affecting the dose homogeneity. Further, gamma evaluation showed more than 96% pixel pass rate for standard 3%/3 mm dose difference and distance-to-agreement criteria. Moreover, this plan offers less probability of "geometrical miss" at the highly irregular CW with regional nodal radiotherapy. CONCLUSION: Hybrid conformal plans with SDP would facilitate improved dose distribution and reduced uncertainty in delivery and promises to be a suitable treatment option for complex postmastectomy CW with regional nodal irradiation.

5.
J Med Phys ; 40(3): 129-35, 2015.
Article in English | MEDLINE | ID: mdl-26500398

ABSTRACT

As complex treatment techniques such as intensity modulated radiotherapy (IMRT) entail the modeling of rounded leaf-end transmission in the treatment planning system, it is important to accurately determine the dosimetric leaf gap (DLG) value for a precise calculation of dose. The advancements in the application of the electronic portal imaging device (EPID) in quality assurance (QA) and dosimetry have facilitated the determination of DLG in this study. The DLG measurements were performed using both the ionization chamber (DLGion) and EPID (DLGEPID) for sweeping gap fields of different widths. The DLGion values were found to be 1.133 mm and 1.120 mm for perpendicular and parallel orientations of the 0.125 cm(3) ionization chamber, while the corresponding DLGEPID values were 0.843 mm and 0.819 mm, respectively. It was found that the DLG was independent of volume and orientation of the ionization chamber, depth, source to surface distance (SSD), and the rate of dose delivery. Since the patient-specific QA tests showed comparable results between the IMRT plans based on the DLGEPID and DLGion, it is concluded that the EPID can be a suitable alternative in the determination of DLG.

SELECTION OF CITATIONS
SEARCH DETAIL
...