Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 10(11): 2189-99, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21750219

ABSTRACT

Deregulation of the phosphoinositide 3-kinase (PI3K) signaling pathway such as by PTEN loss or PIK3CA mutation occurs frequently in human cancer and contributes to resistance to antitumor therapies. Inhibition of key signaling proteins in the pathway therefore represents a valuable targeting strategy for diverse cancers. PF-04691502 is an ATP-competitive PI3K/mTOR dual inhibitor, which potently inhibited recombinant class I PI3K and mTOR in biochemical assays and suppressed transformation of avian fibroblasts mediated by wild-type PI3K γ, δ, or mutant PI3Kα. In PIK3CA-mutant and PTEN-deleted cancer cell lines, PF-04691502 reduced phosphorylation of AKT T308 and AKT S473 (IC(50) of 7.5-47 nmol/L and 3.8-20 nmol/L, respectively) and inhibited cell proliferation (IC(50) of 179-313 nmol/L). PF-04691502 inhibited mTORC1 activity in cells as measured by PI3K-independent nutrient stimulated assay, with an IC(50) of 32 nmol/L and inhibited the activation of PI3K and mTOR downstream effectors including AKT, FKHRL1, PRAS40, p70S6K, 4EBP1, and S6RP. Short-term exposure to PF-04691502 predominantly inhibited PI3K, whereas mTOR inhibition persisted for 24 to 48 hours. PF-04691502 induced cell cycle G(1) arrest, concomitant with upregulation of p27 Kip1 and reduction of Rb. Antitumor activity was observed in U87 (PTEN null), SKOV3 (PIK3CA mutation), and gefitinib- and erlotinib-resistant non-small cell lung carcinoma xenografts. In summary, PF-04691502 is a potent dual PI3K/mTOR inhibitor with broad antitumor activity. PF-04691502 has entered phase I clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Pyridones/pharmacology , Pyrimidines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/therapeutic use , Binding, Competitive , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Enzyme Inhibitors/therapeutic use , Female , Humans , Mice , Mice, Nude , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Binding/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
2.
Bioorg Med Chem Lett ; 21(4): 1270-4, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21269826

ABSTRACT

Intra-molecular hydrogen bonding was introduced to the quinazoline motif to form a pseudo ring (intra-molecular H-bond scaffold, iMHBS) to mimic our previous published core structures, pyrido[2.3-D]pyrimidin-7-one and pteridinone, as PI3K/mTOR dual inhibitors. This design results in potent PI3K/mTOR dual inhibitors and the purposed intra-molecular hydrogen bonding structure is well supported by co-crystal structure in PI3Kγ enzyme. In addition, a novel synthetic route was developed for these analogs.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Quinazolines/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Humans , Hydrogen Bonding , Models, Chemical , Models, Molecular , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism
3.
Bioorg Med Chem Lett ; 20(20): 6096-9, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20817449

ABSTRACT

Pteridinones were designed based on a non-selective kinase template. Because of the uniqueness of the PI3K and mTOR binding pockets, a methyl group was introduced to C-4 position of the peteridinone core to give compounds with excellent selectivity for PI3K and mTOR. This series of compounds were further optimized to improve their potency against PI3Kα and mTOR. Finally, orally active compounds with improved solubility and robust in vivo efficacy in tumor growth inhibition were identified as well.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Pteridines/chemistry , Pteridines/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Glioma/drug therapy , Humans , Mice , Models, Molecular , Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pteridines/administration & dosage , Pteridines/pharmacology , Solubility , Structure-Activity Relationship , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/metabolism
4.
Cancer Res ; 67(20): 9887-93, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17942920

ABSTRACT

Amplification and overexpression of erbB2 (Her-2/neu) proto-oncogene has been linked to human malignancies including tumors of the breast, ovary, and stomach. It has been implicated in tumor growth, sensitivity to standard chemotherapy, prognosis of patients, and disease-free survival. Although the clinical use of trastuzumab (Herceptin) has prolonged the survival of breast cancer patients with erbB2-overexpressing tumors, there is an urgent need for more potent and orally bioavailable small-molecule inhibitors. CP-724,714 is a potent inhibitor of erbB2 receptor autophosphorylation in intact cells and is currently undergoing phase I clinical trials. Here, we describe the effects of CP-724,714 in vitro and in vivo in human breast cancer models. CP-724,714 is selective for inhibiting growth of HER2-driven cell lines. In addition, we show that it induces G1 cell cycle block in erbB2-overexpressing BT-474 human breast carcinoma cells and inhibits erbB2 autophosphorylation in xenografts when administered p.o. to athymic mice. It induces a marked reduction of extracellular signal-regulated kinase and Akt phosphorylation, tumor cell apoptosis, and release of caspase-3. P.o. administration (q.d. or b.i.d.) of CP-724,714 inhibits the growth of erbB2-overexpressing tumors in athymic mice without overt adverse effects.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Animals , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Growth Processes/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Phosphorylation/drug effects , Proto-Oncogene Mas , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/metabolism , Xenograft Model Antitumor Assays
5.
Protein Expr Purif ; 44(2): 121-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15946859

ABSTRACT

High-level recombinant expression of protein kinases in eukaryotic cells or Escherichia coli commonly gives products that are phosphorylated by autocatalysis or by the action of endogenous kinases. Here, we report that phosphorylation occurred on serine residues adjacent to hexahistidine affinity tags (His-tags) derived from several commercial expression vectors and fused to overexpressed kinases. The result was observed with a variety of recombinant kinases expressed in either insect cells or E. coli. Multiple phosphorylations of His-tagged full-length Aurora A, a protein serine/threonine kinase, were detected by mass spectrometry when it was expressed in insect cells in the presence of okadaic acid, a protein phosphatase inhibitor. Peptide mapping by liquid chromatography-mass spectrometry detected phosphorylations on all three serine residues in an N-terminal tag, alpha-N-acetyl-MHHHHHHSSGLPRGS. The same sequence was also phosphorylated, but only at a low level, when a His-tagged protein tyrosine kinase, Pyk2 was expressed in insect cells and activated in vitro. When catalytic domains of Aurora A and several other protein serine/threonine kinases were expressed in E. coli, serines in the affinity tag sequence GSSHHHHHHSSGLVPRGS were also variably phosphorylated. His-Aurora A with hyperphosphorylation of the serine residues in the tag aggregated and resisted thrombin-catalyzed removal of the tag. Treatment with alkaline phosphatase partly restored sensitivity to thrombin. The same His-tag sequence was also detected bearing alpha-N-d-gluconoylation in addition to multiple phosphorylations. The results show that histidine-tag sequences can receive complicated posttranslational modification, and that the hyperphosphorylation and resulting heterogeneity of the recombinant fusion proteins can interfere with downstream applications.


Subject(s)
Histidine/metabolism , Oligopeptides/metabolism , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/biosynthesis , Serine/metabolism , Acetylation , Alkaline Phosphatase/chemistry , Animals , Aurora Kinases , Baculoviridae/genetics , Catalytic Domain/genetics , Cell Line , Escherichia coli/genetics , Escherichia coli/metabolism , Focal Adhesion Kinase 2/biosynthesis , Focal Adhesion Kinase 2/metabolism , Gas Chromatography-Mass Spectrometry , Gluconates/metabolism , Humans , Light , Molecular Weight , Okadaic Acid/pharmacology , Phosphorylation , Protein Processing, Post-Translational/drug effects , Protein Serine-Threonine Kinases/biosynthesis , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Recombinant Proteins/chemistry , Scattering, Radiation , Spodoptera , Thrombin/chemistry
6.
J Clin Invest ; 112(2): 197-208, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12843127

ABSTRACT

The serine/threonine kinase Akt/PKB plays key roles in the regulation of cell growth, survival, and metabolism. It remains unclear, however, whether the functions of individual Akt/PKB isoforms are distinct. To investigate the function of Akt2/PKBbeta, mice lacking this isoform were generated. Both male and female Akt2/PKBbeta-null mice exhibit mild growth deficiency and an age-dependent loss of adipose tissue or lipoatrophy, with all observed adipose depots dramatically reduced by 22 weeks of age. Akt2/PKBbeta-deficient mice are insulin resistant with elevated plasma triglycerides. In addition, Akt2/PKBbeta-deficient mice exhibit fed and fasting hyperglycemia, hyperinsulinemia, glucose intolerance, and impaired muscle glucose uptake. In males, insulin resistance progresses to a severe form of diabetes accompanied by pancreatic beta cell failure. In contrast, female Akt2/PKBbeta-deficient mice remain mildly hyperglycemic and hyperinsulinemic until at least one year of age. Thus, Akt2/PKBbeta-deficient mice exhibit growth deficiency similar to that reported previously for mice lacking Akt1/PKBalpha, indicating that both Akt2/PKBbeta and Akt1/PKBalpha participate in the regulation of growth. The marked hyperglycemia and loss of pancreatic beta cells and adipose tissue in Akt2/PKBbeta-deficient mice suggest that Akt2/PKBbeta plays critical roles in glucose metabolism and the development or maintenance of proper adipose tissue and islet mass for which other Akt/PKB isoforms are unable to fully compensate.


Subject(s)
Adipose Tissue/pathology , Aging , Diabetes Mellitus, Experimental/pathology , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/physiology , Adipose Tissue/metabolism , Animals , Body Weight , Caspase 3 , Caspases/metabolism , Female , Genetic Vectors , Glucose/metabolism , Glucose Tolerance Test , Glucose-6-Phosphatase/metabolism , Glycogen Synthase/metabolism , Hyperglycemia/genetics , Hyperglycemia/pathology , Hyperinsulinism/genetics , Immunohistochemistry , Insulin/blood , Insulin/metabolism , Islets of Langerhans/pathology , Liver/metabolism , Male , Mice , Mice, Transgenic , Models, Genetic , Muscles/metabolism , Organ Size , Phenotype , Phosphoenolpyruvate Carboxykinase (GTP)/biosynthesis , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Polymerase Chain Reaction , Protein Isoforms , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-akt , Time Factors , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...