Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 16058, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362955

ABSTRACT

Aortic dissection (AD) is one of the fatal and complex conditions. Since there is a lack of a specific treatment guideline for type-B AD, a better understanding of patient-specific hemodynamics and therapy outcomes can potentially control the progression of the disease and aid in the clinical decision-making process. In this work, a patient-specific geometry of type-B AD is reconstructed from computed tomography images, and a numerical simulation using personalised computational fluid dynamics (CFD) with three-element Windkessel model boundary condition at each outlet is implemented. According to the physiological response of beta-blockers to the reduction of left ventricular contractions, three case studies with different heart rates are created. Several hemodynamic features, including time-averaged wall shear stress (TAWSS), highly oscillatory, low magnitude shear (HOLMES), and flow pattern are investigated and compared between each case. Results show that decreasing TAWSS, which is caused by the reduction of the velocity gradient, prevents vessel wall at entry tear from rupture. Additionally, with the increase in HOLMES value at distal false lumen, calcification and plaque formation in the moderate and regular-heart rate cases are successfully controlled. This work demonstrates how CFD methods with non-invasive hemodynamic metrics can be developed to predict the hemodynamic changes before medication or other invasive operations. These consequences can be a powerful framework for clinicians and surgical communities to improve their diagnostic and pre-procedural planning.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , Aortic Dissection/drug therapy , Computer Simulation , Hemodynamics , Hydrodynamics , Models, Cardiovascular , Aortic Dissection/pathology , Blood Flow Velocity , Humans , Male , Middle Aged , Stress, Mechanical
2.
Sci Rep ; 11(1): 12757, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140562

ABSTRACT

Coarctation of the aorta (CoA) is a congenital tightening of the proximal descending aorta. Flow quantification can be immensely valuable for an early and accurate diagnosis. However, there is a lack of appropriate diagnostic approaches for a variety of cardiovascular diseases, such as CoA. An accurate understanding of the disease depends on measurements of the global haemodynamics (criteria for heart function) and also the local haemodynamics (detailed data on the dynamics of blood flow). Playing a significant role in clinical processes, wall shear stress (WSS) cannot be measured clinically; thus, computation tools are needed to give an insight into this crucial haemodynamic parameter. In the present study, in order to enable the progress of non-invasive approaches that quantify global and local haemodynamics for different CoA severities, innovative computational blueprint simulations that include fluid-solid interaction models are developed. Since there is no clear approach for managing the CoA regarding its severity, this study proposes the use of WSS indices and pressure gradient to better establish a framework for treatment procedures in CoA patients with different severities. This provides a platform for improving CoA therapy on a patient-specific level, in which physicians can perform treatment methods based on WSS indices on top of using a mere experience. Results show how severe CoA affects the aorta in comparison to the milder cases, which can give the medical community valuable information before and after any intervention.


Subject(s)
Aorta/physiopathology , Aortic Coarctation/physiopathology , Stress, Mechanical , Tunica Intima/physiopathology , Blood Flow Velocity , Computer Simulation , Hemodynamics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...