Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(9): e29778, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694109

ABSTRACT

Understanding plant-microbe interaction can be useful in identifying the microbial drivers of plant invasions. It is in this context that we explored the diversity of endophytic microbes from leaves of Anthemis cotula, an annual plant that is highly invasive in Kashmir Himalaya. We also tried to establish the role of endophytes in the invasiveness of this alien species. We collected and processed leaf samples from three populations at three different sites. A total of 902 endophytic isolates belonging to 4 bacterial and 2 fungal phyla were recovered that belonged to 27 bacterial and 14 fungal genera. Firmicutes (29.1%), Proteobacteria (24.1%), Ascomycota (22.8%) and Actinobacteria (19%) were dominant across all samples. Plant growth promoting traits, such as Ammonia production, Indole Acetic Acid (IAA) production, Phosphate solubilization and biocontrol activity of these endophytes were also studied and most of the isolates (74.68%) were positive for ammonia production. IAA production, phosphate solubilization and biocontrol activity was present in 39.24%, 36.70% and 20.26% isolates, respectively. Furthermore, Botrytis cinerea, a pathogen of A. cotula in its native range, though present in Kashmir Himalaya does not affect A. cotula probably due to the presence of leaf endophytic microbial antagonists. Our results highlight that the beneficial plant growth promoting interactions and enemy suppression by leaf endophytes of A. cotula, may be contributing to its survival and invasion in the Kashmir Himalaya.

2.
Environ Monit Assess ; 194(9): 596, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35861887

ABSTRACT

Reliable predictions of future distribution ranges of ecologically important species in response to climate change are required for developing effective management strategies. Here we used an ensemble modelling approach to predict the distribution of three important species of Abies namely, Abies pindrow, Abies spectabilis and Abies densa in the Hindu Kush Himalayan region under the current and two shared socioeconomic pathways (SSP245 and SSP585) and time periods of 2050 and 2090s. A correlative ensemble model using presence/absence data of the three Abies species and 22 environmental variables, including 19 bioclimatic variables and 3 topographic variables, from known distributions was built to predict the potential current and future distribution of these species. The individual models used to build the final ensemble performed well and provided reliable results for both the current and future distribution of all three species. For A. pindrow, precipitation of the driest month (Bio14) was the most important environmental variable with 83.3% contribution to model output while temperature seasonality (Bio4) and annual mean diurnal range (Bio2) were the most important variables for A. spectabilis and A. densa with 48.4% and 46.1% contribution to final model output, respectively. Under current climatic conditions, the ensemble models projected a total suitable habitat of about 433,003 km2, 790,837 km2 and 676,918 km2 for A. pindrow, A. spectabilis and A. densa, respectively, which is approximately 10.36%, 18.91% and 16.91% of the total area of Hindu Kush Himalayan region. Projections of habitat suitability under future climate scenarios for all the shared socioeconomic pathways showed a reduction in potentially suitable habitats with a maximum overall loss of approximately 14% of the total suitable area of A. pindrow under SSP 8.5 by 2090. A decline in total suitable habitat is predicted to be 9.6% in A. spectabilis by 2090 under the SSP585 scenario while in A. densa 6.67% loss in the suitable area is expected by 2050 under the SSP585 scenario. Furthermore, there is no elevational change predicted in the case of A. pindrow while A. spectabilis is expected to show an upward shift by about 29 m per decade and A. densa is showing a downward shift at a rate of 11 m per decade. The results are interesting, and intriguing given the occurrence of these species across the Hindu Kush Himalayan region. Thus, our study underscores the need for consideration of unexpected responses of species to climate change and formulation of strategies for better forest management and conservation of important conifer species, such as A. pindrow, A. spectabilis and A. densa.


Subject(s)
Abies , Climate Change , Ecosystem , Environmental Monitoring , Forests
3.
Microbiol Res ; 254: 126888, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34700185

ABSTRACT

Phyllosphere or aerial surface of plants represents the globally largest and peculiar microbial habitat that inhabits diverse and rich communities of bacteria, fungi, viruses, cyanobacteria, actinobacteria, nematodes, and protozoans. These hyperdiverse microbial communities are related to the host's specific functional traits and influence the host's physiology and the ecosystem's functioning. In the last few years, significant advances have been made in unravelling several aspects of phyllosphere microbiology, including diversity and microbial community composition, dynamics, and functional interactions. This review highlights the current knowledge about the assembly, structure, and composition of phyllosphere microbial communities across spatio-temporal scales, besides functional significance of different microbial communities to the plant host and the surrounding environment. The knowledge will help develop strategies for modelling and manipulating these highly beneficial microbial consortia for furthering scientific inquiry into their interactions with the host plants and also for their useful and economic utilization.


Subject(s)
Biodiversity , Host Microbial Interactions , Microbiota , Plants , Microbiota/physiology , Plants/microbiology , Plants/parasitology , Plants/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...